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Abstract

Geostatistics involves the fitting of spatially continuous models to spatially discrete data
(Chilès and Delfiner, 1999). Preferential sampling arises when the process which determines
the data-locations and the process being modelled are stochastically dependent. Conventional
geostatistical methods assume, if only implicitly, that sampling is non-preferential. However,
geostatistical methods are often used in situations where sampling is likely to be preferential:
for example, in a pollution monitoring network, monitors will typically be placed close to likely
sources of pollution. We give a general expression for the likelihood function of preferentially
sampled geostatistical data and discuss how this can be evaluated approximately using Monte
Carlo methods. We present an idealised model for preferential sampling, and show through
simulations how preferential sampling invalidates conventional geostatistical methods of in-
ference. We discuss practical strategies for dealing with preferential sampling and describe
two applications. The first application is to data from an air pollution monitoring network in
California, USA, where the objective is to construct estimates of spatially averaged pollution
levels. The second application is to a set of bio-monotoring data from Galicia, northern Spain,
where the objective is to assess the impact of industry on the region-wide pollution surface.

Key words: environmental monitoring; geostatistics; marked point processes; Monte Carlo
inference; preferential sampling; spatial statistics.
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1 Introduction

The term geostatistics describes the branch of spatial statistics in which data are obtained
by sampling a spatially continuous phenomenon S(x), where x denotes location, at a discrete
set of locations xi : i = 1, ..., n in a spatial region of interest, A. Typically, and throughout
this paper, A ⊂ IR2. In many cases, S(x) cannot be measured without error. In classical
geostatistics, measurement errors are assumed to be additive, possibly on a transformed scale.
Hence, if Yi denotes the measured value at the location xi, a simple model for the data would
take the form

Yi = S(xi) + Zi : i = 1, ..., n (1)

where the Zi are mutually independent, zero-mean random variables. The objectives of a
geostatistical analysis typically focus on prediction of properties of the realisation of S(x)
throughout the region of interest A. Targets for prediction might include, according to context:
the value of S(x) at an unsampled location; the spatial average of S(x) over A or sub-sets
thereof; the minimum or maximum value of S(x); or sub-regions in which S(x) exceeds a
particular threshold. Chilès and Delfiner (1999) give a comprehensive account of classical
geostatistical models and methods.

Diggle, Moyeed and Tawn (1998) introduced the term model-based geostatistics to mean the
application of general principles of statistical modelling and inference to geostatistical prob-
lems. In particular, they added Gaussian distributional assumptions to the classical model
(1) and re-expressed it as a two-level hierarchical linear model, in which S(x) is the value at
location x of a latent Gaussian stochastic process and, conditional on S(xi) : i = 1, ..., n, the
measured values Yi : i = 1, ..., n are mutually independent, Normally distributed with means
S(xi) and common variance τ 2. Diggle, Moyeed and Tawn (1998) then extended this model,
retaining the Gaussian assumption for S(x) but allowing a classical generalized linear model
(McCullagh and Nelder, 1989) for the mutually independent conditional distributions of the
Yi given S(xi).

As a convenient shorthand notation to describe the hierarchical structure of a geostatistical
model, we use [·] to mean “the distribution of,” and write S = {S(x) : x ∈ IR2} and Y =
(Y1, ..., Yn). Then, the Diggle, Moyeed and Tawn (1998) model has the simple structure
[S, Y ] = [S][Y |S] = [S]Π[Yi|S(xi)]. Furthermore, in (1), the [Yi|S(xi)] are univariate Gaussian
distributions with means S(xi) and common variance τ 2

As presented above, and in almost all of the geostatistical literature, the models for the
data treat the sampling locations xi either as fixed by design or otherwise stochastically
independent of the process S(x), and hence of Y . Admitting the possibility that the sampling
design may be stochastic, and writing X = (x1, ..., xn), the structure of the model becomes
[X, S, Y ] = [X][S][Y |S], from which it is clear that conditioning on X does not affect inferences
about S or Y . We refer to this as non-preferential sampling of geostatistical data. Conversely,
preferential sampling refers to any situation in which [X, S, Y ] 6= [X][S, Y ].

We contrast the term non-preferential with the term uniform, the latter meaning that, before-
hand, all locations in A are equally likely to be sampled. Examples of designs which are both
uniform and non-preferential include completely random designs and regular lattice designs
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(strictly, in the latter case, if the lattice origin is chosen at random). An example of a non-
uniform, non-preferential design would be one in which sample locations are an independent
random sample from a non-uniform distribution on A. Preferential designs can arise either
because sampling locations are deliberately concentrated in sub-regions of A where the un-
derlying values of S(x) tend to be larger (or smaller) than average, or more generally when X
and Y are the joint outcome of a marked point process in which there is dependence between
the points and the marks.

We emphasise at this point that our definition of preferential sampling is as a stochastic
phenomenon. A sampling design that deliberately focuses on sub-regions where the mean of
S(x), as opposed to its realised value, is atypically high, is not preferential. However, in most
geostatistical applications it is difficult to maintain a sharp distinction between determistic or
stochastic variation on S(x) because of the absence of independent replication of the process
under investigation.

Our aims in this paper are to demonstrate the problems that can arise if preferential sampling
is ignored in the analysis of geostatistical data, to suggest ways of adjusting standard methods
of analysis to alleviate these problems and to apply the adjusted methods to two environmental
monitoring data-sets. Preferential sampling is a common feature of environmental monitoring
networks, in which context there is a natural inclination to place monitors in areas which are
thought to be at high risk for pollution.

In Section 2 we introduce our two applications. The first concerns a routine monitoring net-
work in which monitoring locations are generally concentrated in areas of high population
density. The second concerns a two-stage biomonitoring study, in which the region of interest
was first sampled preferentially, with sample locations somewhat concentrated around sources
of industrial pollution, and later non-preferentially with a lattice design. Section 3 presents
an idealised model for preferential sampling, and uses this model to demonstrate how geo-
statistical analyses which ignore preferential sampling can be misleading. Section 4 discusses
likelihood-based inference using Monte Carlo methods. Section 5 considers practical analysis
strategies for dealing with the preferential sampling problem. Section 6 describes an analysis
of the data from each of our two examples. The paper ends with a short discussion.

2 Motivating examples: exploratory analysis

Exploratory analysis of the data can help to reveal the nature and extent of any preferential
sampling. When the status of the sampling method is in doubt, it may also be worthwhile to
conduct a formal test for the existence of preferential sampling.

2.1 A test for preferential sampling

Schlather, Ribeiro and Diggle (2004, henceforth SRD) develop two tests for preferential sam-
pling, which operate by treating a set of geostatistical data as a marked point process. Their
random field model, which is equivalent to our notion of non-preferential sampling, is that the
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sample locations X are a realisation of a point process P on A, that the mark of a point at
locations x is the value at x of the realisation of a random field S on A, and that P and S
are independent processes.

The more powerful of the two tests considered in SRD, as indicated by the results of a
simulation study, used an empirical counterpart of the function E(h) = E[S(o)|o, x ∈ P where
h denotes the distance between an aribtrary origin, o, and the point x. Under the random field
hypothesis, the conditioning on o and x belonging to P does not affect any property of the
random field S, hence E(h) is constant. The intutive interpretation of a non-constant E(h)
is that if there is a positive association between S and the conditional intensity of P given
S, then pairs of points of P at small separation distances h will, on average, be associated
with larger than average values of S and conversely if the association is negative, whereas the
values of S at widely separated locations will typically be independent, irrespective of any
assocation between S and P, and E(h) will therefore approach the unconditional mean of S
as h becomes large.

In practice, the test must be applied to the noisey measurement data Y , rather than to S;
this does not affect the validity of the test, but will reduce its power because one effect of the
measurement component in (1) is to dilute any association beteen P and S. To implement a
formal test, SRD suggest fitting a stationary Gaussian process to Y , after transformation if
necessary, and comparing the empirical function Ê(h) for the (transformed) data with versions
of Ê(h) obtained using independent simulations from the fitted random field model, holding
the data-locations fixed.

2.2 Air pollution monitoring in California

Our first example concerns data giving the locations of 84 PM2.5 monitors operational dur-
ing the year 2000 in the state of California, USA, and the corresponding year-long average
measured values of the pollutant at each monitor.

One simple question posed by these data is how we should estimate the spatial average of
PM2.5 over a region of interest, for example a zip-code or county. One currently used estimator
is a simple arithmetic average of values from all monitors that lie within the region of interest
(CHECK FUENTES ET AL PAPER). Both this and, to a lesser extent, more sophisticated
estimators based on classical geostatistical methods, for example kriging (Chilès and Delfiner,
1999, Chapter 3), are potentially misleading if the sampling is preferential. The rationale for
the locations of the monitors is unknown but appears to be related to population density.
Also, we shall show in Section 7.1 that the local density of monitors is related to a number of
socio-economic descriptors at zip-code level.

Figure 1 shows the locations of the 84 monitors, superimposed on point predictions of av-
erage concentrations obtained under the assumption that sampling is non-preferential. The
underlying geostatistical model for the spatial prediction was a stationary Gaussian process
for square-root transformed PM2.5 values, with a linear model for the mean, and Matérn
spatial correlation function; see Section 7.1 for details.
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Figure 1: Locations of 84 PM2.5 monitors in the state of California, USA, operational in the
year 2000. Grey-scale image shows point predictions of average 2000 concentrations through-
out California (see text for details).

Figure 2 shows the empirical function Ê(h) as defined in Schlather, Ribeiro and Diggle (2004).
For a formal test, we fit a Gaussian random field model to square-root transformed PM2.5
measurements and use the test statistic

T =
∑

i

√

√

√

√

1
∑i−1

j=0
Ebin(j)

|E(i) − E(0)|

. NOTE THAT E(0) IS THE BIN THAT CONTAINS ZERO, AND Ebin IS THE NUMBER
OF POINTS WITHIN THE BIN. The visual impression of a decreasing trend in Ê(h) withy
increasing h is confirmed by rejection of the random field hypothesis at the conventional 5%
level, reinforcing the visual impression from Figure (13) that monitor intensity is positively
associated with PM2.5 levels.

2.3 Heavy-metal bio-monitoring in Galicia

Our second example concerns bio-monitoring of heavy metal pollution in Galicia, northern
Spain. The data consist of two spatial surveys of heavy metal concentrations in moss samples,
taken in 1997 and 2000. In the first survey, sampling was deliberately concentrated in or
near areas of industrial activity which are known to be sources of heavy metal pollution and
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Figure 2: Test for independence between PM2.5 monitor locations and pollutant levels. The
empirical function Ê(h) was calculated after applying a square-root transformation to PM2.5
levels; see text for details.

is therefore preferential, whereas the second survey used a regular lattice design which is
therefore non-preferential. For further details, see Fernández, Rey and Carballeira (2000) and
Aboal, Real, Fernández and Carballeira (2005). One objective of analysing these data is to
estimate, and compare, maps of heavy metal concentrations in 1997 and 2000. No major
sources of pollution were introduced between 1997 and 2000. Our working assumption is
therefore that, whilst overall pollution levels may have changed during the five years between
the two surveys, a common model for the underlying pollution field S(x) is justifiable. A
classical geostatistical analysis seems appropriate for the 2000 data, but less so for the 1997
data because of the preferential nature of the sampling.

Figure 3 shows the sampling locations for the two surveys, together with the locations of
known major sources of heavy-metal pollution.

Figure 3: Sampling locations for 1997 (open circles) and 2000 (closed circles) surveys of heavy-
metal pollution in Galicia. Triangles denote locations of known sources of pollution.

Levels of several different heavy metals were recorded in the study. We focus here on the
concentrations of lead in each of 1997 and 2000. The data included two gross outliers in 2000,
each of which we replaced by the average of the remaining values for the year 2000.

Table 1 gives summary statistics for the 1997 and 2000 data. Note that the mean response is
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Table 1: Summary statistics for lead pollution levels measured in 1997 and 2000.

untransformed log-transformed
1997 2000 1997 2000

Number of locations 63 132 63 132
Mean 4.72 2.05 1.44 0.64
Standard deviation 2.21 0.91 0.48 39
Minimum 1.67 0.80 0.52 2.25
Maximum 9.51 6.00 -0.22 1.79

Figure 4: Empirical distributions of log-transformed lead concentrations in the 1997 and 2000
samples.

higher for the 1997 data than for the 2000 data, consistent with the former being preferentially
sampled near potential pollutant sources. Also, the log-transformation eliminates an apparent
variance-mean relationship in the data and leads to more symmetric distributions of measured
values. Figure 4 shows the empirical distributions of log-transformed lead concentrations in
each of the two years, again showing the shift between 1997 and 2000, consistent with the
preferential character of the 1997 sample.

Figure 5 shows scatterplots of the 1997 and 2000 log-tranformed measurements against dis-
tance from the nearest pollution source. These suggest a weak, negative association between
lead concentrations and distance.

3 A model for preferential sampling

Our interest is in enabling valid inferences about the unobserved spatial process S when the
placement of sampling locations is potentially preferential. As is the case in both of our
motivating examples, this situation often arises because those conducting the survey exercise
a degree of subjective judgement in choosing the sampling locations. This makes it difficult
to justify formal modelling of the joint spatial distribution of locations and measured values
at those locations. Nevertheless, we shall propose and investigate an idealised model and use
this to demonstrate some of the ways in which preferential sampling affects the inferences
which can be made from the data.
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Figure 5: Scatterplot of log-transformed lead concentrations against distance to nearest pol-
lution source for 1997 (open circles) and 2000 (solid dots) data

3.1 A common latent process model

Recall that S denotes an unobserved, spatially continuous process on a spatial region A, X
denotes a point process on A and Y denotes a set of measured values, one at each point of X.
The focus of scientific interest is on properties of S, as revealed by the data (X, Y ), rather
than on the joint properties of S and X, but we wish to protect against spurious inferences
that might arise because of stochastic dependence between S and X.

To clarify the distinction between preferential and non-preferential sampling, and the inferen-
tial consequences of the latter, we first examine a situation considered by Rathbun (1996), in
which S determines the conditional intensity of an inhomogeneous Poisson process X, whilst
measurements Y are taken at a pre-specified set of locations, i.e. independently of X. Then,
the joint distribution of S, X and Y takes the form

[S, X, Y ] = [S][X|S][Y |S]. (2)

It follows immediately on integrating (2) with respect to X that the joint distribution of S
and Y has the standard form, [S, Y ] = [S][Y |S]. Hence, for inference about S it is valid,
if potentially inefficient, to ignore X, i.e. to use standard geostatistical methods. Models
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analogous to (2) have also been proposed in a longitudinal setting, where the analogues of Y
and X are a time-sequence of repeated measurements at pre-specified times and a related time-
to-event outcome, respectively. See, for example, Wulfsohn and Tsiatis (1997) or Henderson,
Diggle and Dobson (2000).

In contrast, if Y is observed at the points of X, the appropriate factorisation is

[S, X, Y ] = [S][X|S][Y |X, S]. (3)

Even when the algebraic form of [Y |X, S] reduces to [Y |S], an important distinction between
(3) and (2) is that in (3) there is a functional dependence between S and X which cannot be
ignored; typically, [Y |S, X] = [Y |S0], where S0 = S(X) denotes the values of S(x) at all points
x ∈ X. The implicit specification of [S, Y ] resulting from (2) is therefore non-standard, and
conventional geostatistical analyses, which ignore the stochastic nature of X, are potentially
misleading. The longitudinal analogue of (??) arises when subjects in a longitudinal study
provide measurements at time-points which are not pre-specified as part of the study design;
see, for example, Lin, Scharfstein and Rosenheck (2004).

3.2 A simple parametric model

We define a specific class of models through the following assumptions.

A1. S is a stationary Gaussian process with mean µ, variance σ2 and correlation function
ρ(u; φ) = Corr{S(x), S(x′)} for any x and x′ a distance u apart.

A2. Conditional on S, X is an inhomogeneous Poisson process with intensity

λ(x) = exp{α + βS(x)}. (4)

A3. Conditional on S and X, Y is a set of mutually independent Gaussian variates with
Yi ∼ N(S(xi), τ

2).

It follows from A1 and A2 that, unconditionally, X is a log-Gaussian Cox process (Møller,
Syversveen and Waagepetersen, 1998). If in A2 β = 0, then it follows from A1 and A3 that the
unconditional distribution of Y is multivariate Gaussian with mean µ1 and variance matrix
τ 2I + σ2R, where R has elements rij = ρ(||xi − xj ||; φ).

In what follows, we shall use this special form of the common latent process model to inves-
tigate the impact of preferential sampling on conventional geostatistical methods of analysis.

4 Impact of preferential sampling on geostatistical

inference

We have conducted a simulation experiment in which we simulated data on A the unit square
from an underlying stationary Gaussian process which we then sampled, with additive Gaus-
sian measurement error, either non-preferentially or preferentially according to each of the
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Figure 6: Sample locations and underlying realisations of the signal process for the model
used in the simulation study. The left-hand panel shows the completely random sample, the
centre-panel the preferential sample and the right-hand panel the clustered sample. In each
case, the grey-scale image represents the realisation of the signal process, S(x), which was
used to generate the associated measurement data. The model parameter values are µ = 4,
σ2 = 1.5, φ = 0.15, κ = 1, τ 2 = 0.25, β = 2

following sampling designs. For the completely random sampling design, sample locations xi

are an independent random sample from the uniform distribution on A. For the preferential

design, the xi are generated by the model described in Section 3.2, with parameter β = 2.
For the clustered design, we used the same model, but used one realisation of S to gener-
ate the data Y and a second, independent realisation of S to generate X, thereby giving a
non-preferential design with the same marginal properties as the preferential design.

The model for the spatial process S was stationary Gaussian, with mean µ = 4, variance
σ2 = 1.5, and Matérn correlation with scale parameter φ = 0.15 and shape parameter κ = 1.
In each case, the data yi consisted of the realised value of S(xi) plus an independent Gaussian
measurement error with mean zero and variance τ 2 = 0.25.

Figure 6 shows a realisation of each of the three sampling designs superimposed on a single
realisation of the process S. The preferential nature of the sampling in the central panel of
Figure 6 is clear.

4.1 Variogram estimation

The theoretical variogram of a stationary spatial process Y (x) is the function V (u) = Var{Y (x)−
Y (x′)} where u denotes the distance between x and x′. Non-parametric estimates of V (u)
are widely used in geostatistical work, both for exploratory data analysis and for diagnostic
checking. In this section, we illustrate the impact of preferential sampling on non-parametric
variogram estimation.

Consider a set of data (xi, yi) : i = 1, ..., n, where xi denotes a location and yi a corresponding
measured value. The empirical variogram ordinates are the quantities vij = (yi − yj)

2/2.
Each vij is an unbiased estimator for V (uij), where uij is the distance between xi and xj. A
scatterplot of vij against uij or, more usefully, a smoothed version of this scatterplot, can be
used to suggest appropriate parametric models for the spatial covariance structure of the data;
for more information on variogram estimation, see for example Cressie (1985; 1991, Chapter
2), Chilès and Delfiner (1999) or Diggle and Ribeiro (2007, Chapter 5).

The two panels of Figure 7 show simulation-based estimates of the point-wise bias and standard
deviation of smoothed empirical variograms, derived from 500 replicate simulations. With
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Figure 7: Bias and standard deviation of the sample variogram under random, preferential
and clustered sampling. See text for detailed description of the simulation model.

regard to bias, the results under both uniform and clustered non-preferential sampling designs
are consistent with the unbiasedness of the empirical variogram ordinates; although smoothing
the empirical variogram ordinates does induce some bias, this effect is negligible in the current
setting. In contrast, under preferential sampling the results show severe bias. With regard
to efficiency, the right-hand panel of Figure 7 illustrates that clustered sampling designs,
whether preferential or not, are also less efficient than uniform sampling. The bias induced
by preferential sampling is qualitatively unsurprising. The implicit estimand of the empirical
variogram is the variance of Y (x)−Y (x′) conditional on both x and x′ belonging to X, which
in general will differ from the unconditional variance; see, for example, Walder and Stoyan
(1996) or Schlather (2001).

4.2 Spatial prediction

We now illustrate the impact of preferential sampling on spatial prediction using standard
kriging methodology. Suppose that our target for prediction is S(x0), the value of process
S at a generic location x0, given sample data (xi, yi), i = 1, 2, ..., n. The widely used ordi-
nary kriging predictor estimates the unconditional expectation of S(x0) by generalised least
squares, but using plug-in estimates of the parameters that define the covariance structure
of Y . Traditionally, these plug-in estimates would be obtained by matching theoretical and
empirical variograms in some way; we used maximum likelihood estimates under the assumed
Gaussian model for Y .

Table 2 shows 95% coverage intervals for the resulting biases and mean square prediction
errors of the ordinary kriging predictor Ŝ(x0), where x0 = (0.5, 0.5), in each case evaluated
empirically over 500 replicate simulations.

The bias is large and positive under preferential sampling, because the sampling model leads to
a higher density of sample locations close to high values of the underlying process S. The other
two sampling designs both lead to approximately unbiased prediction, as predicted by the-
ory. The substantially larger mean square error for clustered by comparison with completely
random sampling reflects the inefficiency of the latter, as previously seen in the context of
variogram estimation.
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Table 2: Impact of sampling design on the bias and mean square error of the ordinary kriging
predictor Ŝ(x0), when x0 = (0.5, 0.5) and each sample consists of 100 locations on the unit
square. Each entry in the table is a 95% coverage interval calculated empirically from 500
independent simulations. See text for detailed description of the simulation model.

Sampling design
Completely random Preferential (β = 2) Clustered

bias (−0.081, 0.059) (1.290, 1.578) (−0.082, 0.186)
mean square error (0.268, 0.354) (2.967, 3.729) (0.948, 1.300)

5 Likelihood-based analysis for the common latent

process model

For the common latent process model (3), the likelihood function for data X and Y can be
expressed as

L(θ) = [X, Y ] = ES [[X|S][Y |X, S]] , (5)

where the expectation is with respect to the unconditional distribution of S. Evaluation of
the conditional distribution [X|S] strictly requires the realisation of S to be available at all
x ∈ A. In practice, we approximate the spatially continuous realisation of S by the set of
values of S on a fine lattice to cover A, and replace the exact locations X by their closest
lattice points. We then partition S into S = {S0, S1}, where S0 denotes the values of S at
each of n data-locations xi ∈ X, and S1 denotes the values of S at the remaining N − n
lattice-points.

To evaluate L(θ) approximately, a naive strategy would be to replace the intractable expec-
tation on the right hand side of (5) by a sample average over simulations of S. This would
give the crude Monte Carlo approximation

LMC(θ) = m−1

m
∑

j=1

[X|Sj ][Y |Sj, X], (6)

where the Sj are independent realisations of S. To reduce the Monte Carlo variance, we could
use anti-thetic pairs of realisations, hence for each of j = 1, ..., m/2 we set S2j = 2µ − S2j−1.

Both the crude Monte Carlo approximation and its anti-thetic variant fail when Y is measured
without error, because in this case the term [Y |Sj , X] in (6) will be zero with probability one.
For essentially the same reason, the method fails in practice when the measurement error is
small relative to the variance of S, yet this is the situation in which preferential sampling
potentially has most impact on the analysis. We therefore modify (6) by introducing an
importance sampler as follows.

Firstly, write the exact likelihood (5) as the integral

L(θ) =
∫

[X|S][Y |X, S]
[S|Y ]

[S|Y ]
[S]dS (7)
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Now, write [S] = [S0][S1|S0] and replace the term [S|Y ] in the denominator of (5) by
[S0|Y ][S1|S0, Y ] = [S0|Y ][S1|S0]. Note also that [Y |X, S] = [Y |S0]. Then, (7) becomes

L(θ) =
∫

[X|S]
[Y |S0]

[S0|Y ]
[S0][S|Y ]dS

= ES|Y

[

[X|S]
[Y |S0]

[S0|Y ]
[S0]

]

(8)

and a Monte Carlo approximation is

LMC(θ) = m−1

m
∑

j=1

[

[X|Sj]
[Y |S0j]

[S0j |Y ]
[S0j ]

]

, (9)

where now the Sj are simulations of S conditional on Y . Note in particular that when Y is
measured without error, [Y |S0j]/[S0j |Y ] = 1, and that Y and S0 have the same unconditional
expectations.

To simulate a realisation from [S|Y ], we first simulate a realisation s from the unconditional
distribution of S, using the circulant embedding algorithm of Wood and Chan (1994), and a
realisation z consisting of an independent random sample from N(0, τ 2).

Now, let A denote the n by N matrix in which each row contains N − 1 zeros and a single
element 1 that identifies the position of each data-location xi amongst the N lattice-points of
S. Also, let ΣS denote the N by N variance matrix of S, and write R = AΣSA′ + τ 2I. Note
that our required [S|Y ] is multivariate Gaussian, with mean

ΣSA′R−1(Y − µY ) (10)

and variance matrix
ΣS − ΣSA′R−1AΣS (11)

It follows that
Sj = s + ΣSA′R−1(Y + z − As − µ) (12)

is a realisation from [S|Y ]. Finally, we again use an anti-thetic variant of (9) as a variance
reduction device.

ILLUSTRATIVE CALCULATION WITH SIMULATED DATA - ANTICIPATE FLAT LIKE-
LIHOOD PROBLEMS

MAYBE ALSO SIMULATION SHOWING THAT POISSON MODEL IS ROBUST TO SMALL-
SCALE REGULARITY IN PREFERENTIAL SAMPLING DESIGN.

6 Practical strategies to accommodate preferential sam-

pling

The simulated example at the end of Section 5 indicates that likelihood-based inference for
preferentially sampled data is liable to suffer from difficulties caused by poor identifiablity of
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model parameters. In some contexts, we may be willing to circumvent this difficulty problem
by adopting a Bayesian approach with informative priors. In others, we may be willing
to specify a realistic range for the degree of preferentiality and to treat β in the common
latent process model, equation (4), as a sensitivity parameter. In this Section we consider two
different strategies that do not impose any a priori constraints on the degree of preferentiality.

6.1 Shared covariate information

One possible strategy is to seek explanatory variables which eliminate, or at least reduce, the
adverse effects of preferential sampling. Suppose, for the sake of illustration, that S is observed
without error and that an unconditional dependence between X and S arises through their
shared dependence on a latent variable, U , and that the joint distribution of X and S is of
the form

[X, S] =
∫

[X|U ][S|U ][U ]dU, (13)

so that X and S are conditionally independent given U . If U could be observed, we could
then legitimately work with the conditional likelihood, [X, S|U ] = [X|U [S|U ] and eliminate
X by integration, exactly as is done implicitly in standard geostatistical practice.

In practice, “observing” U means finding explanatory variables which are associated both with
X and with S, adjusting for their effects and checking that after this adjustment there is little
or no residual dependence between X and S, i.e. that sampling in no longer preferential.

For the California monitoring data, a reasonable hypothesis is that monitor placement is
related to local demographic and socio-economic conditions, in which case the US census pro-
vides a number of candidate covariates. For the Galicia bio-monitoring data, the preferential
sampling in 1997 arose because sampling locations were concentrated around industrial lo-
cations. Including some function of distance to the nearest industry as a covariate at each
sampling location should therefore reduce the stochastic dependence between X and S.

This strategy is unlikely completely to eliminate dependence between S and X, but it may
well reduce it to the point where its effects are innocuous. Note also that the Schlather,
Ribeiro and Diggle (2004) test can be applied to residuals from a regression model and so
provides a diagnostic check on the extent of any residual dependence.

6.2 Two-stage sampling

A second possibile strategy is to use a two-stage sample. The Galicia data provide an illus-
tration. The 2000 data are non-preferentially sampled. If we were prepared to fit a single
model, or at least a model with common covariance structure, to the underlying Gaussian
process S in 1997 and in 2000, the 2000 data would give information about the parameters
of S uncompromised by the effects of preferential sampling. Combining the information from
the 1997 and 2000 data should therefore alleviate the identifiability problems which would
arise if the 1997 data were analysed separately.
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7 Motivating examples re-visited

7.1 PM2.5 monitoring in California

Recall from Section 2.1 that the Calfornia data show significant evidence of preferential sam-
pling. Our analysis strategy for these data is to look for shared covariate information as
described in Section 6.1 above and to ascertain whether adjustment for any such covariates
approximately eliminates the effects of preferential sampling, thereby leading to more trust-
worthy predictive inference for spatially averaged pollution levels.

The US Census 2000 data include a number of socio-economic and demographic variables
recorded at zip-code level. In the analysis reported here, we define the study-region A to be
mainland California, with a total census population count of 33,867,596 distributed amongst
1709 zip-codes. The areas of these 1,709 zip-codes vary by orders of magnitude, from 0.01255
km2 to 19,870 km2 because of the similarly wide variation in population density, between 0
and 20,100 people per km2 (26 zip-code areas, accounting for for 1.4% of the total area of
mainland California, have no inhabitants). In what follows, we treat each census variable as
a piece-wise constant surface at zip-code level, so as to define a value for every location in the
study region. In this way, we construct the following potential explanatory variables:

Popdensity log of population per km2

Black percentage of population who are black or African American
Hispanic percentage of population who are Hispanic or Latino
College percentage of population AGE 25 and over educated at least

to college level
Income median family income

We write U(x) for the vector of covariate values at location x. Note that in the US census
coding, “Hispanic or Latino” and “Black or African American” are not mutually exclusive.

To investigate covariate effects, we modify the model described in Section 3.2 as follows.
Firstly, in A1 we replace the constant mean µ by a regression function, U(x)′γ. Secondly,
in place of A2 we assume that the monitor locations X = {xi : i = 1, ..., n} form a partial
realisation on A of an inhomogeneous Poisson process with intensity surface λ(x), where

log λ(x; θ) = U(x)′θ, (14)

as in Cox (1972).

The likelihood for the data X and Y now consists of two independent terms, [X|U ][Y |U ].
The term corresponding to [Y |U ] takes the standard form of a linear Gaussian model with
covariates (Diggle and Ribeiro, 2007, Section 5.4.2). The log-likelihood corresponding to [X|U ]
is

L(θ; X) =
i=n
∑

i=1

log λ(xi; θ) −
∫

x∈A
λθ(x)dx. (15)

To fit the model, we estimate its parameters by maximum likelihood, and use generalised
likelihood ratio tests in conjunction with a forward search to select covariates for inclusion in
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the model. Note that the integral in (15) reduces to a finite summation because each element
of U(x) is piece-wise constant over A.

7.1.1 The measurement sub-model

The measurement sub-model is a standard linear Gaussian model applied to appropriately
transformed PM2.5 levels. The model-fitting proceeds in three stages: selection of a transfor-
mation; preliminary identification the covariance structure of the transformed data; likelihood-
based inference (see, for example, Diggle and Ribeiro, 2007).

For the first stage, we examined the profile log-likelihood for the transformation parameter
λ in the Box-Cox family (Box and Cox, 1964), under the assumption that all five candi-
date explanatory variables are included into the trend surface and a Matérn family for the
residual correlation is used. The profile log-likelihood is maximised at λ ≈ 0.5, suggesting a
square-root transformation (Figure 8, upper row). We therefore fix λ = 0.5, use the model
specification above, and examine the marginal distribution of the residuals. They appears to
be approximately Gaussian (Figure 8, bottom row).

For the second stage, we examined the smoothed empirical variogram of the residuals (Figure
9); this confirms the presence of residual spatial correlation, but does not clearly identify its
parametric form.

We therefore proceed to formal likelihood-based inference to fit a linear model for the mean
response in conjunction with a Matérn correlation structure for the residual signal S(x).
For the Matérn shape parameter κ, we considered the values 0.5, 1.5 and 2.5, obtaining
maximised log-likelhoods -231.1, -229.5, -229.2; we therefore proceed fixing κ = 2.5. We then
used a forward selection in conjunction with a standard likelhood ratio criterion, D, to decide
which explanatory variables to include in the model. This led to our including Popdensity
(D = 2(237.9 − 232.6) = 10.6, p = 0.0011) and College (D = 2(232.6 − 229.6) = 6.0,
p = 0.0143). Anticipating the results of the next sub-section we also included Income, although
its effect was not significant (D = 2(229.6 − 229.2) = 0.8, p = 0.3711).

Table 3 gives the maximum likelihood parameter estimates for the fitted model. For compari-
son, we also show Bayesian point estimates and 95% credible intervals. The estimated Model
(I) for PM2.5 pollutant data is disaplyed in Figure 1; and the fitted Models (I’) and (II’) are
shown as middle and bottom plots in Figure 10.

We use the residuals to check the independency between monitor locations and pollutant
level after adjusting for the covariates. Figure 11 shows the empirical Ê(h) function. We do
not reject the random-field model hypothesis for both Model (I) (P-value=> 0.5) and Model
(II) (P-value= 0.42-0.43). ( Figure 12 shows the empirical V̂ (h) function. We do not reject
the random-field model hypothesis for both Model (I) (P-value=0.33-0.34) and Model (II)
(P-value= 0.16-0.17).

NOTE THAT SE FROM MLE IS GREATER THAN 1/4 OF CI FROM BAYESIAN.
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Figure 8: Selecting a transformation for the PM2.5 data: profile log-likelihood for the Box-Cox
transformation parameter λ (top-row) while fixing κ at 0.5 (left), 1.5 (middle), 2.5 (right).
They maximised at 0.41, 0.39, 0.39 (left to right). Plots on the bottom row are the Normal
q-q plot of residuals while taking λ = 0.5.
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Figure 9: Smoothed empirical variogram of the residual for the PM2.5 data.

7.1.2 The location sub-model

START HERE

The forward selection procedure led to a model with three covariates: Popdensity, College,
Income. Table 4 shows parameter estimated and standard errors for the fitted model.

Figure 13 shows the fitted intensity surfaces for the fitted model in Table 4. Left-hand panels
are displayed on the untransformed scale, whereas the right-hand panels show log-transformed
intensities. The white areas have zero population and have been excluded from the analysis.
For each type of monitor, the two models give qualitatively similar fitted intensity surfaces,
but the fitted intensity surface shows more spatial variation for O3 than for PM2.5.

To assess the fit of the Poisson model, we use a standard diagnostic tool of spatial point
pattern analysis, the K-function (Ripley ,1976, 1977) as extended to the non-stationary case
by Baddelely, Møller and Waagepetersen (2000). The K-function measures, as a function of
distance, the extent to which the locations show excess aggregation or regularity, relative to
expectation under the fitted Poisson model. For an inhomogeneous Poisson process, K(s) =
πs2, where s denotes distance. Figure 14 displays estimates of K(s) − πs2, together with
95% pointwise Monte Carlo tolerance limits under the fitted inhomogeneous Poisson process
model, derived from 100 simulated realisations of the fitted model.

In Figure 14, we consider distances up to 75km, which is about one-quarter of the width of
California. Estimates of K(s) become increasingly imprecise as s increases. For the PM2.5
monitors, the K-function analysis suggests some residual spatial aggregation at distances up
to about 4.1km, corresponding to groups of two or more monitors being placed close together
more often than would be consistent with the fitted Poisson model. Note, however, that with
only 84 PM2.5 monitors altogether, this effect could be explained by a few unusually close
pairs.
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Maximum likelihood estimates Bayesian estimates
effects Model I Model II Model I’ Model II’
Intercept 3.549 3.576 3.484 3.510

(0.456) (0.455) (3.143, 3.824) (3.153, 3.827)
Popdensity 0.264 0.274 0.273 0.287

( 0.073) (0.073) (0.223,0.326) (0.234,0.338)
College -1.657 -2.393 -1.729 -2.588

(0.665) (1.067) (-2.212, -1.255) (-3.366, -1.823)
Income – 1.097*10−5 – 1.25 ∗ 10−5

– (1.255*10−5) – (3.40 ∗ 10−6, 2.12 ∗ 10−5)
τ 2∗ 0.367 0.373 0.425 0.450

– – (0.325, 0.575) ( 0.325, 0.625)
σ2 1.207 1.189 1.209 1.205

– – ( 0.976, 1.534) ( 0.965, 1.564)
φ 0.257 0.259 0.310 0.310

– – (0.259, 0.362) ( 0.259, 0.362)

Table 3: Maximum likelihood estimates (with standard error) and Bayesian point estimates
(with 95% cridible interval) for the fitted models of the PM2.5 pollutant data. τ 2∗ denotes a
relative nugget (τ 2/σ2).

Effect Estimate (S.E)
Intercept -11.698 (0.337)
Intercept*LA -0.997 (0.375)*
Popdensity 0.829(0.054)*
College 2.571(0.985)*
Income −5.024 ∗ 10−5(1.033 ∗ 10−5)*

Table 4: Maximum likelihood estimates and standard errors for the PM2.5 monitor locations.
All quantitiative explanatory variables except Popdensity are centered. Asterisks indicate
that the corresponding Wald statistic is significant at the 5% level.
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For the O3 monitors, the estimated K-function falls well outside the simulation envelope over
most of the plotted range of distance. This is caused by a pair of monitors situated close
together in a zip-code with only 64 people. We labelled this pair of monitors with crosses in
Figure ??. If we treat one of the two monitors as an outlier and delete it from the analysis, the
fitted model can be shown as model (IV) on Table ??. Removing one of these two monitors
does not greatly change the estimated covariate effects. However, the estimated K-function
as shown on the bottom right plot in Figure 14 now falls within the simulation envelope, or
nearly so, throughout the plotted range of distances.

Bearing in mind the implicit multiple testing in the pointwise comparisons between data and
simulation envelopes, and the idealised nature of the Poisson model, the overall fit with the
“outlier” removed seems acceptable.

7.2 Heavy-metal bio-monitoring in Galicia

Empirical evidence for preferential sampling?

How to exploit the two-stage sampling design, in which one of the two stages is potentially
preferential, the other unambiguously non-preferential.
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Figure 10: Bayesian Kriging maps for PM2.5. Top row is produced by Model (0), middle row
is by Model (I’), and bottom row is produced by Model (II’) on Table 3.
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Figure 11: Test for independence between PM2.5 monitor locations and pollutant levels. The
empirical function Ê(h) was calculated after applying a square-root transformation to PM2.5
levels and removing the trend surfaces (left panel: Model I, right-panel: Model II on Table 3).
See text for details.
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Figure 12: Test for independence between PM2.5 monitor locations and pollutant levels. The
empirical function V̂ (h) was calculated after applying a square-root transformation to PM2.5
levels and removing the trend surfaces (left panel: Model I, right-panel: Model II on Table 3).
See text for details.
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Figure 13: Estimated PM2.5 monitor intensity using both original scales (left-hand panels) and
log scale (right-hand panels) for PM2.5 monitors in California. The fitted model is specified
in Table 4. There is no population living in the pure white areas. The top row uses postcode
entities and the bottom row uses pixels as units to draw.
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Figure 14: Estimates of K(s)−πs2 (solid line) and 95% pointwise Monte Carlo tolerance limits
based on 100 simulations of the fitted model (dashed lines) for PM2.5 monitors. Left-hand
panel covers distances from 0 to 75km, right-hand panel distances from 0 to 15km.
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