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Compositional Kriging: A Spatial Interpolation
Method for Compositional Data1

Dennis J. J. Walvoort2,3 and Jaap J. de Gruijter2

Compositional data are very common in the earth sciences. Nevertheless, little attention has been paid
to the spatial interpolation of these data sets. Most interpolators do not necessarily satisfy the constant
sum and nonnegativity constraints of compositional data, nor take spatial structure into account.
Therefore, compositional kriging is introduced as a straightforward extension of ordinary kriging that
complies with these constraints. In two case studies, the performance of compositional kriging is
compared with that of the additive logratio-transform. In the first case study, compositional kriging
yielded significantly more accurate predictions than the additive logratio-transform, while in the second
case study the performances were comparable.
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INTRODUCTION

In the earth sciences, data are often expressed as fractions or percentages. Exam-
ples are soil textural classes, the chemical composition of rock, and the pollen
and foraminiferal composition of sediments. Other, less obvious, examples are
indicator data (Bierkens and Burrough, 1993a,b; Journel, 1983) and the data struc-
tures resulting from continuous classification algorithms such as fuzzy c-means
(Bezdek, Ehrlich, and Full, 1984; De Gruijter and McBratney, 1988). These are all
examples of a special type of data usually referred to as closed data, compositional
data, or compositions (Aitchison, 1986; Davis, 1986). A regionalized composition
is formally defined as a vector random functionz(xi ) located at pointxi in a spatial
domainD with p componentszk(xi )

z(xi ) = [z1(xi ), z2(xi ), . . . , zp(xi )]
T
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that are nonnegative

zk(xi ) ≥ 0 for k = 1, . . . , p

and sum to a constantc which usually equals 100 (%) or 1:

zT(xi )1(p) = c

where1(p) represents thep-dimensional vector of ones, and superscript T de-
notes transposition. Pawlowsky (1989), Pawlowsky and Burger (1992), Olea,
Pawlowsky, and Davis (1993), and Pawlowsky, Olea, and Davis (1994, 1995)
employed a more restrictive definition. To avoid unnecessary complications, these
authors did not consider compositions with one or more zero components. In this
paper, the formal definition given above is adopted.

Spatial interpolation methods come into scope when compositions at un-
observed sitesx0 ∈ D are required. Obviously, a suitable spatial interpolation
method should at least satisfy the constant sum and nonnegativity constraints of
compositional data. In addition, the interpolator should also take the spatial co-
variance structure into account.

The aim of our study is to identify an interpolation method that complies with
these demands. First, we give an overview of existing methods. Because none of the
existing methods satisfy all the given criteria, a new interpolation method, viz. com-
positional kriging, is introduced. Its performance is evaluated in two case studies.

EXISTING METHODS

Most spatial interpolation methods yield predictionsz(x0) that are weighted
linear combinations of the available data:

z(x0) = diag(WTZ) 1(p)

whereZ is the data matrix, given by

Z = [zk(xi ) | k = 1, . . . , p; i = 1, . . . ,n] =


z1(x1) z2(x1) · · · zp(x1)
z1(x2) z2(x2) · · · zp(x2)

...
...

...
...

z1(xn) z2(xn) · · · zp(xn)


W is the corresponding matrix of weights, given by

W = [wk(xi ) | k = 1, . . . , p; i = 1, . . . ,n]
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and diag(·) is the diagonal matrix formed from the diagonal elements of its ar-
gument. Appropriate interpolation methods should at least yield predictions that
fully comply with the nonnegativity and constant sum constraints of compositional
data. Examples of such methods are nearest neighbor interpolation, triangulation,
local sample mean, and inverse distance interpolation. Isaaks and Srivastava (1989)
provide more details on these methods, which always yield compositions because
the weights range from zero to one, the weights sum to unity, the columns ofW are
identical, and the conditioning data are compositions. However, as will be shown
later, these properties are too restrictive. Another disadvantage of these methods
is that they do not take the spatial covariance structure into account. This is an im-
portant property of kriging (Journel and Huijbregts, 1978), and we will therefore
focus on this geostatistical interpolation method in the remainder of this paper.

Burrough, Van Gaans, and Hootsmans (1997) and Odeh, McBratney, and
Chittleborough (1992) used ordinary kriging to interpolate fuzzy membership
vectors. These compositions were obtained by means of fuzzy clustering (Bezdek,
Ehrlich, and Full, 1984; De Gruijter and McBratney, 1988). However, ordinary
kriging does generally not yield compositions for two reasons. First, as ordinary
kriging is a nonconvex interpolator, predictions are not necessarily nonnegative.
Negative predictions may occur if observation points are screened by other obser-
vation points (Isaaks and Srivastava, 1989; Journel and Huijbregts, 1978). This so-
called screen effect is more pronounced for semivariograms with a parabolic shape
near the origin and a small relative nugget variance. Second, the constant sum
constraint is only guaranteed if all columns ofW are identical. This can be accom-
plished by using semivariogramsγk that are proportional in scale:

γk = akγ for k = 1, . . . , p (1)

whereak is a positive scaling factor, andγ a permissible semivariogram. Practically
speaking, this kind of spatial structure is only encountered whenp = 2. In that
case, the semivariograms are necessarily identical because of the constant sum
constraint.

It can be concluded that ordinary kriging by itself is not sufficient for predict-
ing compositions at unvisited sites. Therefore, several authors applied kriging in
conjunction with a transformation method. In this paper, two of these methods are
discussed, viz. the basis method (Olea, Pawlowsky, and Davis, 1993; Pawlowsky,
Olea, and Davis, 1995) and the additive logratio-transform (Pawlowsky, Olea, and
Davis, 1994, 1995).

The basis method transforms a composition into an associated regionalized
basis, which is defined as a vector random functionb(xi )

b(xi ) = [b1(xi ), b2(xi ), . . . ,bp(xi )]
T

with p componentsbk(xi ) that are all measured on the same measurement scale
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and are positive (Olea, Pawlowsky, and Davis, 1993; Pawlowsky, Olea, and Davis,
1995):

bk(xi ) > 0 for k = 1, . . . , p

The relationship between a regionalized basis and its associated regionalized com-
position is given by

z(xi ) = cb(xi )

bT(xi )1(p)
= cb(xi )

s(xi )
(2)

The denominator of this expression,s(xi ), is called the size of the basis (Aitchison,
1986). Each regionalized basisb(xi ) has a unique sizes(xi ) and composition
z(xi )/c. As an example of a regionalized basis consider the equivalent thickness of
oil, water, and rock observed in wells in an oil field (Olea, Pawlowsky, and Davis,
1993).

The basis method can be summarized as follows:

1. Given a regionalized compositionz(xi ) and sizes(xi ), compute a region-
alized basis by means of

b(xi ) = s(xi )z(xi )

c

2. Perform semivariogram analysis and (co-)kriging on the regionalized basis;
3. Backtransform predicted regionalized bases into regionalized composi-

tions by means of Eq. (2).

Although the basis method meets the constant sum constraint, predictions are not
necessarily nonnegative. Moreover, backtransformation does not lead to a predictor
with known and desirable properties, such as unbiasedness or minimum prediction
error variance (Olea, Pawlowsky, and Davis, 1993; Pawlowsky, Olea, and Davis,
1995).

The second transformation method considered in this paper is the additive
logratio-transform alr(·) (Aitchison, 1986; Pawlowsky, Olea, and Davis, 1994,
1995). It is given by

alr(z(xi )) = y(xi ) =
[
ln

(
z1(xi )

zp(xi )

)
, ln

(
z2(xi )

zp(xi )

)
, . . . , ln

(
zp(xi )

zp(xi )

)]T

After performing semivariogram analysis and kriging on the alr-transformed data,
predictions are backtransformed by means of the additive generalized logistic
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transformation agl(·):

agl(y(x0)) = z(x0) = c[exp(y1(x0)), exp(y2(x0)), . . . ,exp(yp(x0))]

1T[exp(y1(x0)), exp(y2(x0)), . . . ,exp(yp(x0))]

Note that the last element ofy(xi ) equals 0 for allxi ∈ D, including prediction
pointx0. Hence, this element is excluded from semivariogram analysis and kriging.

Kriging in conjunction with the alr-transform yields predictions that fully
satisfy the constant sum and nonnegativity constraints. However, unlike the trans-
formed data, the backtransformed data do not possess desirable properties such
as unbiasedness and minimum prediction error variance (Pawlowsky, Olea, and
Davis, 1994, 1995). Nevertheless, backtransformation ( i.e., agl-transform) is gen-
erally preferred as it makes the results easier to interpret.

Neither the basis method nor the alr-transform honor all requirements of a
suitable interpolation method listed in the Introduction. Nevertheless, Pawlowsky
(1989), Olea, Pawlowsky, and Davis (1993), and Pawlowsky, Olea, and Davis
(1994, 1995) advocate the use of these transformation methods because they make
cokriging of (transformed) regionalized compositionsas a wholepossible. In this
way, all available information is integrated in the prediction process, thus leading,
at least from a theoretical point of view, to better predictions. Direct application
of cokriging to regionalized compositions as a whole is not possible because of
spurious negative correlation between the components. Spurious correlation is
induced by the constant sum constraint, and results necessarily in singular cokrig-
ing matrices (Pawlowsky, 1989). We take the view that the benefits of cokriging
do not outweigh the limitations of the transformation methods for the following
reasons:

• In case of cokriging, semivariogram analysis is very laborious. Not only
must one modelp(p+ 1)/2 semivariograms and cross-semivariograms,
but all resulting covariance matrices must be positive definite;
• Although the linear model of coregionalization guarantees positive defi-

niteness (Isaaks and Srivastava, 1989; Journel and Huijbregts, 1978), this
model may be too restrictive, resulting in (cross-)semivariograms that fit the
data poorly. This may deprive the cokriging system of some of its potential
improvements over ordinary kriging (Isaaks and Srivastava, 1989);
• The cokriging system most commonly applied containsp× p unbiased-

ness conditions. Letλi
kl denote the weight assigned to thekth element of

conditioning compositionz(xi ) to predict thel th element ofz(x0). Then
for each combination ofk and l the weights must sum to unity ifk = l
and to zero ifk 6= l , i.e.

∑n
i=1 λ

i
kl = δkl , whereδkl is Kronecker delta

(Myers, 1982). Ifk 6= l , positive weights should necessarily be counterbal-
anced by negative weights. As a result, this cokriging system is prone to
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negative predictions (Isaaks and Srivastava, 1989), hampering use of the
basis method;
• Cokriging assumes linear relationships between the covariates, while in

practice nonlinearities may occur.

For these reasons, we will not take cross-correlations into account. Although this
may imply a loss of information in the prediction process, we are no longer depen-
dent on transformation methods. Instead, we will focus on more direct approaches
that act on the compositional data vectors themselves.

Szidarovszky, Baafi, and Kim (1987) and Deutsch (1996) provide algorithms
that produce nonnegative kriging weights. When applied to compositional data,
these convex predictors inevitably lead to nonnegative predictions. Szidarovszky,
Baafi, and Kim (1987) enforced nonnegative weights by replacing the weights
in the ordinary kriging system by the square of a new variable. This modifica-
tion necessarily results in nonnegative weights, because for real numbers, squares
are always greater than or equal to zero. The weights of this system are found
by solving the original ordinary kriging system in an iterative and systematic
way for different sets of conditioning data. Deutsch (1996) provides an algo-
rithm that corrects the kriging weights a posteriori. That is, the ordinary kriging
weights are computed, and then negative weights and related compensating posi-
tive weights are reset to zero. Subsequently, all weights are restandardized to sum
to one.

Both methods are unbiased predictors that quantify prediction error variance.
However, although the requirement of nonnegative weights is a sufficient condition
to obtain nonnegative predictions, it is not a necessary one. Even in the presence of
negative weights, predictions can be nonnegative. In accordance with this obser-
vation, Barnes and You (1992) extended the ordinary kriging system by imposing
upper and lower bounds on the predictions. They concluded that if the ordinary
kriging prediction is between the lower and upper bounds, it is also the optimal
solution for the bounded ordinary kriging system. If on the other hand, the or-
dinary kriging prediction violates one of the bounds, then the bounded ordinary
kriging prediction is equal to the violated bound, and the prediction error variance
is increased accordingly.

Although Szidarovszky, Baafi, and Kim (1987), Barnes and You (1992), and
Deutsch (1996) solved the problem of nonnegative predictions, their methods only
warrant the constant sum constraint when the semivariograms are proportional
in scale [Eq. (1)]. Practically speaking, these methods are only applicable when
p = 2.

In short, none of the methods considered so far complies with all requirements
for an appropriate interpolation method given in the Introduction. Therefore, com-
positional kriging is proposed, i.e. a spatial predictor that fully complies with the
properties of compositional data. Furthermore, it uses the spatial covariance struc-
ture to derive the optimal set of weightsW. Like ordinary kriging, compositional
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kriging is an unbiased predictor that minimizes prediction error variance. It may
be argued however, that a biased maximum likelihood predictor may be more
appropriate for characterizing skewed distributions like those of compositional
data. Furthermore, the prediction error variance is hard to interpret when the ob-
jective is to construct confidence intervals (Pawlowsky-Glahn and Barcelo-Vidal,
1999). Therefore, in the derivation of the compositional kriging system given
below, the prediction error variance is merely considered as an objective func-
tion in a minimization problem rather than a measure for constructing confidence
intervals.

COMPOSITIONAL KRIGING

Compositional kriging is a straightforward extension of ordinary kriging.
Therefore ordinary kriging can be taken as a starting point for the derivation
of the compositional kriging system. The aim of ordinary kriging is to minimize
the prediction error variance subject to the unbiasedness constraint (Journel and
Huijbregts, 1978; Isaaks and Srivastava, 1989):

min
wk

(
σ 2

k + wT
k Ckwk − 2wT

k dk
)

s.t. wT
k 1(n) = 1

whereσ 2
k is the variance of thekth component ofz(xi ), wk is thekth column of

W, Ck is the n× n matrix containing the covariances between the data points
for componentk, anddk is the vector of dimensionn containing the covariances
between the data points and the prediction point for componentk. This constrained
optimization problem can be converted into an unconstrained one by adding the
unbiasedness constraint with Lagrange multiplierµk to the objective function. The
resulting objective function, i.e. the Lagrangian, can be minimized by setting its
partial first derivatives with respect to the weights and the Lagrange multiplier
equal to zero. This results in the ordinary kriging system:

{
Ckwk + µk1(n) = dk

wT
k 1(n) = 1

Solving this system forwk andµk yields an optimal set of weights for each
componentk. Optimal in this sense refers to weights that lead to an unbiased
predictor with minimum prediction error variance.

However, since the constant sum and nonnegativity constraints are not guar-
anteed, these weights are only optimal for each componentk separately, and not
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necessarily for the composition as a whole. Therefore compositional kriging con-
siders all components simultaneously by minimizing the sum of their prediction
error variances, and by taking the unbiasedness, nonnegativity, and constant sum
constraints into account:

min
wk

p∑
k=1

(
σ 2

k + wT
k Ckwk − 2wT

k dk
)

s.t. WT1(n) = 1(p)

wT
k zk ≥ 0 for k = 1, . . . , p

tr(WTZ) = 1

wherezk represents thekth column ofZ, and tr(·) gives the trace of its argu-
ment. Since this optimization problem also contains inequality constraints, its
solution is more complicated than that of ordinary kriging. Fortunately, the con-
cept of active constraints (Wismer and Chattergy, 1978) is very useful in this re-
spect. It can be illustrated by means of a simple univariate optimization problem:

min
x

f (x)

s.t. x ≥ 0

where f (x) is a convex quadratic function ofx. At point x∗ satisfying minx
f (x) = f (x∗) subject tox∗ ≥ 0 it follows from Figure 1 that

f ′(x∗) = 0

or

f ′(x∗) > 0 and x∗ = 0

where f ′(x∗) = df(x∗)/dx∗. In other words, the following conditions must hold at
the minimum: 

f ′(x∗)+ α∗ = 0

x∗ ≥ 0

α∗ ≤ 0

α∗x∗ = 0

whereα∗ is a Lagrange multiplier. These results are called the Kuhn–Tucker sta-
tionary conditions (Wismer and Chattergy, 1978). The inequality constraint is said
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Figure 1. Three convex quadratic functionsf (x) (solid
lines) and their first derivativesf ′(x) with respect tox
(dashed lines).

to beactiveif α∗ < 0 and consequentlyf ′(x∗) > 0 andx∗ = 0 (Fig. 1C). On the
other hand, it isinactiveif α∗ = 0 and f ′(x∗) = 0 (Figs. 1(A) and 1(B)). Hence,
active inequality constraints can be considered as equality constraints, whereas
inactive inequality constraints can be left out of consideration.
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Analogously, the Kuhn–Tucker conditions for the compositional kriging op-
timization problem are given by



Ckwk + µk1(n) + αkzk + βkzk = dk for k = 1, . . . , p

WT1(n) = 1(p)

tr(WTZ) = 1

wT
k zk ≥ 0 for k = 1, . . . , p

αk ≤ 0 for k = 1, . . . , p

αk
(
wT

k zk
) = 0 for k = 1, . . . , p

whereαk, β, andµk are Lagrange multipliers pertaining to the nonnegativity, the
constant sum, and the unbiasedness constraints, respectively. The resulting set
of equations is the compositional kriging system. Clearly, if the active inequal-
ity constraints were known in advance, the solution of the compositional kriging
system would be rather straightforward. Wismer and Chattergy (1978) provide
an effiecient iterative algorithm to find these active constraints. This algorithm,
known as the method of Theil and Van de Panne, starts with solving the com-
positional kriging system with all inequality constraints removed. Its solution is
optimal if no inequality constraints are violated. Otherwise, combinations of the
violated inequality constraints are added iteratively as equality constraints to the
compositional kriging system until the optimal solution is found.

Compositional Kriging was first described and applied by De Gruijter,
Walvoort, and Van Gaans (1997) who used it to interpolate fuzzy membership
vectors. Also, compositional kriging appears to be a promising alternative for in-
dicator kriging, because order relation problems (Isaaks and Srivastava, 1989) are
implicitly taken into account.

CASE STUDY I: WESEPE

Compositional kriging was applied to interpolate the clay, silt, and sand con-
tents of the top 30 cm soil layer of a 1200 ha region near the village of Wesepe in
the eastern part of the Netherlands. This gently undulating Pleistocene cover-sand
area is characterized by east-southeast to west-northwest running parallel ridges
separated by small stream valleys. Field estimates of the textural composition of
652 soil profiles were made from auger borings by an experienced soil surveyor. A
total of 415 augering points were located on a regular grid of 18 by 24 nodes, with
17 points missing because they were located in a built-up area. The distance be-
tween adjacent grid rows and columns was approximately 167 m. In addition to the
grid points, 137 augering points were selected randomly to improve the estimation
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Figure 2. Ternary diagram showing the distributions of the clay, silt, and sand contents estimated
in the field at the 552 grid and semivariogram points. The vertices represent 100% of clay, silt, and
sand respectively in clockwise direction from the top, while the sides of the triangle represent 0% of
clay, silt, and sand respectively in clockwise direction from the bottom.

of the semivariogram at small lag distances. Furthermore, augerings were made at
100 randomly selected points for validation purposes. These validation data were
excluded from semivariogram analysis and kriging. The compositions estimated
in the field at the grid and additional semivariogram points are given in the ternary
diagram of Figure 2.

The alr-transform and compositional kriging were applied to predict compo-
sitions at the 100 validation points. The basis method could not be applied, because
the regionalized sizes(xi ) could not be quantified. The 552 grid and semivariogram
data were used as conditioning data.

The spatial structures revealed by semivariogram analysis on the untrans-
formed data were clearly anisotropic. The direction of maximum spatial continuity
coincided with the orientation of the stream valleys. However, the semivariograms
computed for the alr-transformed data were isotropic. The semivariogram param-
eters are given in Table 1. (Refer to Journel and Huijbregts, 1978, for definitions
of these models.)
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Table 1. Semivariogram Model Parameters for the Wesepe Data Set

Texture Model c0 (%2) c1 (%2) amax (m) amin (m) φ (◦)

Clay Exponential 1.91 9.84 261 109 105
Silt Exponential 1.13 26.9 188 103 105
Sand Exponential 12.4 46.3 338 220 105
Alr(clay) Spherical 8.15 26.2 116 116 —
Alr(silt) Spherical 0.00 8.83 174 174 —

Note. Parametera is given for the direction of maximum (amax) and minimum (amin) continuity.
Angleφ gives the direction of maximum continuity in clockwise direction from the North.

For both compositional kriging and the alr-transform, Aitchison’s distance be-
tween the predicted̂z(xi ) and observedz(xi ) was computed for all validation points
xi . It is defined as (Martin-Fernandez, Barcelo-Vidal, and Pawlowsky-Glahn, 1998;
Martin-Fernandez, Olea-Meneses, and Pawlowsky-Glahn, submitted)

DA(z(xi ), ẑ(xi ))=
√√√√ p∑

k=1

[
ln

(
zk(xi )[∏p

j=1 zj (xi )
]1/p

)
− ln

(
ẑk(xi )[∏p

j=1 ẑj (xi )
]1/p

)]2

(3)

and meets all criteria Aitchison (1992) formulated for measures of compositional
difference. At two observation points,z(xi ) contained a zero component. These
points were removed from the data set because Eq. (3) is only defined for positive
components. A scatter plot ofDA for the alr-transform versusDA for composi-
tional kriging is given in Figure 3. A one-tailed paired differencet test showed
that the null hypothesis of no difference between the averageDA for compositional
kriging and the alr-transform should be rejected (p ≈ 0). It can be concluded that
for the Wesepe case study, predictions obtained with compositional kriging were
more accurate than those obtained with the alr-transform.

CASE STUDY II: WALKER LAKE

The second case study concerns a composition derived from a digital el-
evation model (DEM) of the Walker Lake area in Nevada. Two data sets were
constructed, an exhaustive data set for validation purposes, and a much smaller
sample data set. The exhaustive data were located at the nodal points of a regular
grid of 300 rows by 260 columns which was superimposed on the DEM. Isaaks and
Srivastava (1989) describe how at each nodal pointi two artificial variablesU (xi )
andV(xi ) were derived as a function of 25 elevation points in the neighborhood
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Figure 3. Aitchison’s distance for the alr-transform (DA-ALR) and compo-
sitional kriging (DA-CK) for the Wesepe case study. The solid line is the 1:1
line.

of xi . To obtain a regionalized composition, we added a third variableW(xi ),
given by

W(xi ) = M −U (xi )− V(xi )

whereM is the maximum sum ofU (xi ) and V(xi ) on the grid. A regionalized
compositionz(xi ) is then constructed by

z(xi ) = [U ′(xi ),V ′(xi ),W
′(xi )]

T = c

M
[U (xi ),V(xi ),W(xi )]

T

wherec = 100%.
The sample data set was obtained by sequential sampling of the exhaustive

grid, which has an assumed grid spacing of 1 distance unit. In the first phase,
195 samples were selected on a regular grid with a grid spacing of 20 distance
units that was superimposed on the exhaustive grid. During the remaining phases,
sampling was restricted to the neighborhood of target points, i.e. points sampled
during previous phases whereV(xi ) > 600 units. In the second phase, 8 additional
samples were taken corresponding to a grid spacing of 10 around all target points
of the first phase. The first two phases are supposed to reveal the major patterns
in the study area. The aim of the third phase was to delineate these patterns more
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Table 2. Semivariogram Model Parameters for the Walker Lake Data Set

Model c0 (%2) c1 (%2) amax amin φ (◦)

U Spherical 39.0 6.24 18.4 5.74 166
V Spherical 2.94 6.33 52.7 29.9 166
W Spherical 49.8 30.6 39.5 30.2 166
Alr(U) Spherical 2.77 15.5 17.3 9.0 166
Alr(V) Spherical 6.07 12.3 22.1 9.9 166

Note. Parametera is given for the direction of maximum (amax) and minimum (amin) continuity.
Angleφ gives the direction of maximum continuity in clockwise direction from the North.

clearly by sampling the exhaustive grid 5 distance units to the east and 5 distance
units to the west of target points. The second and third phase yielded 147 and
114 sample points, respectively, resulting in a total of 456 sample points.

Anisotropic spherical models were fitted to the sample semivariograms. The
model parameters are listed in Table 2. Compositional kriging and the alr-transform
were applied to predict compositions at the unsampled nodes of the exhaustive grid.
Again, the basis method could not be applied because no information was available
on the regionalized sizes(xi ).

Aitchison’s distance was computed between the predicted and true compo-
sitions. Summary statistics are given in Table 3. Because Aitchison’s distance is
only defined for positive components, compositions with zero components were
not considered. Table 3 shows that the alr-transform performed slightly better than
compositional kriging. There was no need for statistical testing, because the entire
population (except for a relatively small sample) was used for validation.

CONCLUSIONS

Compositional kriging is an unbiased predictor that minimizes the prediction
error variance and that complies fully with the nonnegativity and constant sum
constraints of compositional data. In the Wesepe case study compositional kriging
resulted in significantly more accurate results than the alr-transform whereas in

Table 3. Summary Statistics of Aitchison’s Distance for the
Walker Lake Validation Study

Method N Mean p-25 Median p-75

CK 70140 1.59 0.61 1.17 2.20
Alr 71617 1.47 0.55 1.09 1.94

Note. N: number of validation points, p-25 and p-75 are the
lower and upper quartiles respectively, CK: compositional
kriging, Alr: additive logratio-transform.
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the Walker Lake study it gave comparable results. Compositional kriging has the
additional advantages that it can handle compositions with zero components and
that it does not need a regionalized basis like the basis method.
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