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t1 This work presents a new methodology to estimate abundan
e indi
es by age and year that 
ombines2 the spatial distribution of the sto
k and the relation between age groups in a single model. By separating3 the age 
ompositions from the age-aggregated 
at
h per unit e�ort, suitable models 
an be applied to4 ea
h variable, greatly improving the analysis of the importan
e of ea
h fa
tor. Age stru
tures were5 studied by 
ompositional data analysis allowing the full 
ovarian
e stru
ture of age 
ompositions to be6 
onsidered. Age-aggregated 
at
h data was modelled with geostatisti
al methods expli
itly modelling7 the 
orrelation between abundan
e at di�erent lo
ations. The methodology produ
es several abundan
e8 indi
ators that provide an overview of abundan
e along di�erent perspe
tives. The analysis of age9 
ompositions provides an insight on how the population stru
ture evolves over time. The geostatisti
al10 submodel returns abundan
e indi
ators in both spa
e and time perspe
tives. An important out
ome of11 this methodology is a framework to obtain simulations of abundan
e at age that 
an be used as input to12 large simulation frameworks like Management Strategy Evaluation. An appli
ation to Hake (Merlu

ius13 melu

ius) 
aught by the Autumn Series of Portuguese Bottom Trawl Surveys (BTS) is presented, and14 methods are proposed to handle spe
i�
 
hara
teristi
s of the problem at hand, namely, asymmetry and15 over-dispersion. The appli
ation presented assumed that age 
ompositions were independent from age16 aggregated 
at
hes, an assumption supported by the exploratory data analysis.17 Key-words: model-based geostatisti
s; 
ompositional data analysis, bottom trawl surveys; hake; abundan
e18 indi
es.19 1



1 Introdu
tion20 Estimates of abundan
e are important indi
ators of sto
k size and spa
e-time distribution of marine popu-21 lations. Su
h indi
ators 
ontain valuable information for sto
k assessment, where they are used as �sheries-22 independent inputs, and, more generally, for �sheries advi
e and e
ologi
al management. Several methods23 have been proposed to study abundan
e using design-based te
hniques (Co
hran 1960; Thompson 1992;24 Smith and Gavaris 1993); spe
i�
 statisti
al distributions like log-normal (M
Connaughey and Conquest25 1993; Brynjarsdottir and Stefansson 2004; Dingsor 2005; Smith 1990), delta (Pennington 1983; Stefansson26 1996; Smith 1988), Poisson and negative binomial (O'Neill and Faddy 2003; Pradhan and Leung 2006) or27 zero in�ated distributions (Martin et al. 2005; Mendes 2007); and di�erent modelling pro
edures like gen-28 eralised linear models (Smith 1990; Stefansson 1996; Brynjarsdottir and Stefansson 2004; Chen et al. 2004;29 Sousa et al. 2007), generalised additive models (Piet 2002), geostatisti
s (Rivoirard et al. 2000; Roa-Ureta30 and Niklits
hek in press) or hierar
hi
al models (Mendes 2007).31 Considering that individuals of the same age or length, group together looking for food, prote
tion, repro-32 du
tive 
onditions, et
; sampling these populations will naturally originate datasets with high 
orrelation,33 both in population stru
ture and spatial distribution. Re
ently, Hrafnkelsson and Stefansson (2004) and34 Babak et al. (2007), following the work of Ait
hison (1982, 2003) on statisti
al analysis for 
ompositional35 data, des
ribe methods to model the 
orrelation between length groups using Bayesian methods and maxi-36 mum likelihood estimators, respe
tively. It must be noti
ed that 
ompositional data is de�ned by the ve
tor37 of proportions of some whole, subje
t to the 
onstraint of the sum of all proportions being one, whi
h is38 exa
tly what the population age stru
ture represents. On the other hand, the spatial patterns en
ountered39 on abundan
e data are expressed by the 
orrelation between observations related to the distan
e between40 the geographi
al lo
ations where the observations were 
olle
ted, whi
h 
an be modelled with geostatisti
al41 methods (Cressie 1993; Diggle et al. 1998; Chiles and Del�ner 1999; Diggle and Ribeiro 2007).42 Our aim with this work is to propose a new methodology that 
ombines the spatial distribution of the sto
k43 and the relation between age groups in a single model. The methodology provides a framework to obtain44 simulations of abundan
e at age that 
an be used as input to large simulation frameworks like Management45 Strategy Evaluation (MSE) (Hammond and Donovan in press; Johnston and Butterworth 2005; Punt et al.46 2005; Kell et al. 2007), a major subje
t for modern s
ienti�
 advi
e on �sheries and e
ologi
al management.47 An appli
ation to Hake (Merlu

ius melu

ius) 
aught by the Autumn Series of Portuguese Bottom Trawl48 Surveys (BTS) is presented, and methods are proposed to handle spe
i�
 
hara
teristi
s of the problem at49 hand.50 The next se
tion des
ribes the Portuguese BTS, the data 
olle
ted and the dataset used for analysis. On51 the Methods se
tion we will start by presenting the model and its most important 
hara
teristi
s followed52 2



by a detailed des
ription of parameter estimation for abundan
e at age. The Results se
tion des
ribes53 the adjustments required to apply the proposed model to estimate the Hake abundan
e at age o� the54 Portuguese mainland and presents abundan
e estimates by year, at age by year, and spatial distribution by55 year. Finally, we dis
uss the model and its limitations, and 
ompare the results obtained with the abundan
e56 at age estimates obtained using design-based statisti
s.57 2 Material58 The Portuguese BTS have been 
arried out in Portuguese 
ontinental waters sin
e 1979 on board the R/V59 Noruega and R/V Capri
órnio. The main obje
tives of these surveys are: (i) to estimate indi
es of abun-60 dan
e and biomass of the most important 
ommer
ial spe
ies; (ii) to des
ribe the spatial distribution of the61 most important 
ommer
ial spe
ies, and (iii) to 
olle
t individual biologi
al parameters su
h as maturity,62 sex-ratio, weight, food habits, et
. The target spe
ies are hake (Merlu

ius merlu

ius), horse ma
kerel63 (Tra
hurus tra
hurus), ma
kerel (S
omber s
ombrus), blue whiting (Mi
romessistius poutassou), megrims64 (Lepidorhombus bos
ii and L. whi�agonis), monk�sh (Lophius budegassa and L. pis
atorius) and Norway65 lobster (Nephrops norvegi
us). A Norwegian Campbell Trawl 1800/96 (NCT) with a 
odend of 20 mm mesh66 size, mean verti
al opening of 4.8 m and mean horizontal opening between wings of 15.6 m has been used67 (Anonymous 2002).68 The sampling design between 1989 and 2004 followed a strati�ed random strategy. The strati�
ation was69 de�ned by 12 se
tors along the Portuguese 
ontinental 
oast subdivided into 4 depth ranges: 20-100m, 101-70 200m, 201-500m and 501-750 m, with a total of 48 strata. Due to 
onstraints in vessel time the sample size71 was limited to a total of 97 lo
ations, whi
h were allo
ated evenly to obtain 2 lo
ations in ea
h stratum. The72 
oordinates of the sampling lo
ations were sele
ted randomly, albeit 
onstrained by the histori
al re
ords of73 
lear tow positions and other information about the sea �oor, thus avoiding pla
es where trawling was not74 possible. In 2005 a new sampling design, 
omposed by a regular grid with a set of additional random lo
ations,75 was introdu
ed following Jardim and Ribeiro (2007). The tow duration was 60 minutes until 2001 and then76 redu
ed to 30 minutes for the subsequent years, based on an experiment that showed no signi�
ant di�eren
es77 in the mean abundan
e and length distribution between the two tow durations (Cardador, pers.
omm.).78 Histori
ally the Portuguese Autumn bottom trawl survey has been 
arried out between September and79 De
ember and hauls o

urred during daylight. The number of hauls per year, the estimates of abundan
e by80 year together with its standard deviation and 
oe�
ient of variation are presented in the �rst �ve 
olumns81 of Table 1. Sampling statisti
s of abundan
e at age per year and 
oe�
ient of variation are showed on the82 top panel of Table 2.83 The dataset in
luded all valid hauls exe
uted during the Autumn surveys between 1989 and 2006. Ea
h84 3



re
ord 
orresponds to hake 
at
hes in number of individuals by age, haul duration (minutes), haul time,85 haul date, 
oordinates (UTM, Zone 29), bottom salinity and bottom temperature. Cat
hes obtained with86 R/V Capri
órnio (1996, 1999, 2003 and 2004) were 
alibrated to R/V Noruega's 
at
hes using fa
tors by87 age estimated in a 
alibration exer
ise in 2006 (Cardador, pers.
omm). Figure 1 shows the map of observed88 age aggregated 
at
hes of hake during the study period.89 3 Methods90 The model we propose for the abundan
e at age variable I 
onsists of a produ
t of two random variables91
Iij = YiPij where i = 1, . . . , n indexes years and j = 1, . . . , m indexes ages. In this notation Yi represents the92 age aggregated abundan
e for the ith year and Pij refers to the proportion of individuals at the ithyear and93
jthage and the ve
tor Pi denotes the age 
omposition for ea
h year. Our aim is to disentangle population94 abundan
e from its 
omposition by age, so that appropriate statisti
al modelling methods 
an be used95 independently, taking into a

ount the nature of these variables. Inferen
es on Iij are based on Monte Carlo96 methods to derive the distribution of I by the produ
t of simulated values from the distributions of Y and97
P .98
Pi was modelled using 
ompositional data analysis (Ait
hison 1982, 2003), with additive log-ratios trans-99 forming 
ompositions to the multivariate Gaussian (MVG), a 
onvenient s
ale for parameter estimation and100 simulation. The main advantage of these methods is that the 
ovarian
e stru
ture of the age 
ompositions101 
an be estimated from the data and subsequently used in the simulation pro
edure. Consider the 
ommon102 univariate observation of 
at
h per unit e�ort in year i, age j and haul h = 1, . . . , H represented by Cijh, then103 proportion at age is Pijh = Cijh(

∑m

j=1
Cijh)−1 and the transformed values are Dijh = log(PijhP−1

ij=a,h) with104
j 6= a. Di ∼ MVG(Λi, Σi) and the multivariate expe
ted value Λi ∼ MGV(µi, ςi) with maximum likelihood105 estimators µ̂i = µ̄i, the ve
tor of marginal arithmeti
 means, and ς̂i = ρ̂(Di)σ̂

2

i H
−1

i , where ρ̂(Di) is the sam-106 ple 
orrelation matrix and σ̂
2

i is the ve
tor of marginal sample varian
es (Murteira 1990). Using parametri
107 bootstrap (Efron and Tibshirani 1993) we sample from MGV(µ̂i, ς̂i) to simulate the empiri
al distribution108 of the transformed age 
omposition by year and then ba
k-transform to get the empiri
al distribution of age109 
ompositions.110 Abundan
e Yi was modelled as a spatial sto
hasti
 pro
ess (Diggle et al. 1998; Diggle and Ribeiro 2007)111 expli
itly taking into a

ount the spatial 
orrelation between lo
ations. However, there are fa
tors a�e
ting112 abundan
e observations unrelated to population size su
h as lighting and sea 
onditions (Petrakis et al.113 2001; Chen et al. 2004; Hjellvik et al. 2004; Johnsen and Lilende 2007), that might blur the spatial patterns.114 In those situations where information about those fa
tors exist, a GLM (M
Cullagh and Nelder 1991) 
an115 be used to estimate their e�e
t and 
alibrate the observations to equal hauling 
onditions. The 
alibrated116 4



abundan
e represents the predi
ted observations if the hauling 
onditions were the same. To 
ompute it a117 GLM is used to predi
t yearly abundan
e in spe
i�
 
onditions, the referen
e 
onditions, and the devian
e118 residuals are then added. A se
ond advantage that may be en
ountered if GLMs are applied at this stage, is119 to be able to deal with asymmetry and over-dispersion 
aused by the large number of null 
at
hes (Martin120 et al. 2005; Maunder and Punt 2004) or the o

urren
e of very large 
at
hes (Smith 1997; Kappenman 1999).121 Consider now a new variable Zi(xk) that represents the 
alibrated abundan
e in year i at lo
ation xk122 where k = 1, . . . , K indexes sampled lo
ations in the study region A ⊂ R
2. Following the formulation123 proposed by Diggle and Ribeiro (2007) the Gaussian model for the ve
tor of variables Z(x) 
an be written as124

Z(x) = S(x) + ǫ where S(x) is a stationary Gaussian pro
ess at lo
ations x, with E[S(x)] = β, V ar[S(x)] =125
σ2 and an isotropi
 
orrelation fun
tion ρ(h) = Corr[S(x), S(x′)], where h = ‖x − x′‖ is the Eu
lidean126 distan
e between lo
ations x and x′. The terms ǫ are assumed to be mutually independent and identi
ally127 distributed Gau(0, τ2). Under these settings Z(x) ∼ MVG(β, Θ) with Θ parametrised by (σ2, φ, τ2), where128
φ is the 
orrelation range. Several geostatisti
al methods are available to make inferen
e about Θ (Isaaks129 and Srivastava 1989; Cressie 1993; Diggle et al. 1998; Chiles and Del�ner 1999; Rivoirard et al. 2000; Diggle130 and Ribeiro 2007). We adopt Bayesian methods to 
ompute the posterior distributions of the 
orrelation131 parameters and predi
tive distributions for the values of Z(x0), where x0 is a grid of unsampled lo
ations132 over the study area (Diggle and Ribeiro 2007). Our main goal with this approa
h is to take into a

ount133 expli
itly parameter un
ertainty. Noti
e that β re�e
ts mean abundan
e over the study area and the posterior134 distribution is used to obtain the empiri
al distribution of Y . On the other hand, the predi
ted Z(x0) over135 the study area re�e
ts the spatial distributions of abundan
e allowing the study of spatial patterns and their136 evolution by year.137 The analysis of both, Yi and Pi are performed in parallel and the Monte Carlo simulations are 
ombined138 to produ
e the distribution of abundan
e at age by Iijs = YisPijs where s = 1, . . . , S indexes simulations.139 Statisti
s of interest are 
omputed based on Iijs and the abundan
e at age simulations 
an be used as input140 to large simulation frameworks, like those requested by MSE.141 All analysis were 
arried out using the R software (R Development Core Team 2007) and the add-on pa
kage142 geoR (Ribeiro Jr and Diggle 2001).143 4 Results144 We have started the analysis sear
hing for diagnosti
s for the model assumptions and suitable transfor-145 mations. The assumption of independen
e between 
ompositions and total 
at
h was supported by �tting146 a multinomial model with proportions explained by the total 
at
h and 
omparing it to a model without147 
ovariates. For all the years the non signi�
an
e of the 
oe�
ient provides enough eviden
e that the pro-148 5



portions are not asso
iated with the total 
at
h. For the additive log-ratio transformation it is ne
essary149 to 
hoose the referen
e 
lass and, given the o

urren
e of zero values, a 
onstant needs to be added to the150 data. Choi
es for age 
lass two as referen
e 
lass and a value 0.1 for the 
onstant ensure, for most of the151 datasets, better properties in terms of skewness and normality at transformed s
ale, all together indu
ing152 only a small average 
hange rate for all ages, ex
ept for age 5 whi
h showed some rates of around 3, mainly153 due to the small values observed.154 Figure 2 shows the results of 1000 bootstrap simulations of the age 
ompositions per year. In most years155 age 1 has the highest relative 
at
h and ages 4 and 5 the lowest with age zero behaving more errati
ally. In156 1989, 1991, 1995, 1997, 1999, 2000, 2002 and 2006 age 2 had the highest relative 
at
hes. Su
h shift between157 ages 1 and 2 
an be 
aused by ageing errors known to exist in Hake (de Pontual et al. 2006; Pineiro et al.158 2007). Noti
e that, despite of the survey o

urring on the re
ruitment season, age 0 is not the most 
aught,159 although in re
ent years an in
rease in the proportion of individuals of age 0 has been observed. There is a160 higher variability in the proportions at age, presenting higher values than expe
ted by the log transform.161 To model Yi we 
alibrated the observations to remove e�e
ts not related with population abundan
e however162 in�uen
ing abundan
e observations. The data showed greater variability than predi
ted by a Poisson model163 and a negative binomial GLM with log link fun
tion provided the best �t. The available 
ovariates were164 dayperiod, fortnight, bottom salinity and bottom temperature. Dayperiod aimed to 
apture the e�e
t of165 daylight with tree levels: until one hour after sunrise, after one hour before sunset and between both limits.166 Fortnight 
aptured seasonal e�e
ts with seven levels, starting from the se
ond half of September until the end167 of De
ember. Bottom temperature and salinity were in
luded as 
ontinuous variables to 
apture geophysi
al168 e�e
ts. The GLM was �tted by �rstly in
luding and �xing the year e�e
t and then testing for all the169 other 
ovariates in
luding se
ond degree intera
tions. The analysis showed signi�
ant e�e
ts only for year,170 fortnight and their intera
tion. The non-signi�
an
e of the other 
ovariates 
an be explained by the fa
t that171 all hauls are exe
uted with some daylight and the bottom temperature and salinity are roughly 
onstant at172 the depths where most sampling took pla
e. The adjusted model explained only 13% of the data variability,173 a situation not unusual for this kind of analysis (Maunder and Punt 2004).174 The 
alibrated dataset Zi(xk) used in the geostatisti
al analysis was obtained by predi
ting abundan
e per175 year for the se
ond fortnight of O
tober and adding these values to the 
orresponding devian
e residuals.176 To verify the univariate normality of Zi(xk) the Shapiro-Wilks normality test was 
omputed and 16 out of177 18 datasets did not reje
t the null hypothesis of normality at an α = 0.01, whereas for the log-transformed178 original dataset, the null hypothesis was not reje
ted only for one out of 18.179 To 
arry out the geostatisti
al analysis we adopted the exponential fun
tion with algebrai
 form ρ(h) =180
exp{−h/φ} where ρ(h) ≃ 0.05 when h = 3φ, a 
ommon 
hoi
e for spatial 
orrelation modelling. Taking into181 6



a

ount the small dataset available and the la
k of observations at short distan
es, we de
ided to avoiding182 estimating one more 
orrelation parameter from the data. Before pro
eeding with inferen
e and predi
tion183 we 
he
ked for anisotropy e�e
ts using pro�led likelihoods (Diggle and Ribeiro 2007). The pro�les obtained184 were too �at to identify anisotropy parameters and the analysis pro
eeded assuming an isotropi
 spatial185 pro
ess. In pra
ti
e, anisotropy e�e
ts are extremely di�
ult to identify and usually require subje
tive186 information and/or a fairly large amount of samples whi
h is un
ommon on bottom trawl surveys datasets.187 Taking into a

ount isotropy and the small number of samples available per year we rotated the southern188 
ontinental shelf 90o 
lo
kwise so that it be
ame aligned with the western 
oast in order to use as mu
h189 information as possible for inferen
e on model parameters.190 The priors for the 
orrelation parameters were set based on our knowledge of the sto
hasti
 pro
ess 
orrelation191 stru
ture. For the range parameter φ we used an exponential prior distribution with an expe
ted value of192 20km, re�e
ting higher beliefs on short 
orrelations. The nugget varian
e parameter τ2 was reparameterized193 into a relative nugget τ2

REL = τ2σ−2 and the prior set as a zero in�ated Poisson (ZIP) distribution with mean194 of the positive values of 1.25 and a probability of zero values of 0.25. These probabilities were 
omputed for195 values 0 to 8 but attributed to 9 even intervals between 0 and 2 of the relative nugget. Our 
hoi
e is based on196 the prior belief that the GLM analysis should have removed most of the random noise from the data and τ2197 should be small. On the other hand, to estimate τ2 it is ne
essary to have observations at the same lo
ation198 or at very 
lose distan
es whi
h is operationally not feasible for BTS. For the mean parameter β we used a199 �at prior. Common priors were adopted for all years. The prior and posterior distributions of φ and τ2

REL200 are shown in Figure 3. The posterior distributions of φ showed modes approximately between 10 and 20201 km, re�e
ting a 
orrelation range between 30 and 60 km, perfe
tly a

eptable 
onsidering the length of the202 Portuguese 
oast, whereas for τ2

REL it is 
lear that the data does not 
ontain mu
h information about the203 parameter and the posterior distributions are very similar to the priors, in parti
ular in 1990 and between204 1992 and 1997. This has a large impa
t in the results, in parti
ular on the predi
tion varian
es as τ2 re�e
ts205 the random variability of the pro
ess.206 Yearly abundan
e simulations were 
omputed by Yis = exp(βis) where βis are the yearly simulations of the207 posterior distribution of β. The abundan
e index and the 95% 
redibility intervals were obtained 
omputing208 the median and the 0.025 and 0.975 per
entiles of Yi (Figure 4). Abundan
es showed a 
y
li
 pattern with209 high values in 1991, 1997, 2001 and 2005; and low values in 1993, 1996, 1999, 2003 and 2006. There is a per-210 sistent in
rease from 1993 although still within the histori
al limits. The 
redibility intervals are asymmetri
211 and showed larger intervals in the highest estimates as expe
ted by the GLM log transformation. Table 1212 presents several metri
s 
omputed using design statisti
s and geostatisti
s. Considering the asymmetry of Yis213 we 
omputed the relative median absolute deviation, the ratio between the median absolute deviation and214 the median, that 
an be seem as a robust adimensional indi
ator of pre
ision, 
omparable to the 
oe�
ient of215 7



variation. The values obtained by geostatisti
s are smaller than those obtained by design statisti
s, although216 the time trend is similar. This result 
an be explained by a s
reening e�e
t (Isaaks and Srivastava 1989)217 that downweights groups of observations nearby as the information 
ontained in ea
h observation be
omes218 redundant. Aggregations of high observations in spa
e (Figure 1) have a lower impa
t on the results of the219 geostatisti
al analysis than on design-based methods given the sensibility of the sample mean to high values.220 The higher pre
ision obtained with design estimators is apparently over-optimisti
 for BTS, where sample221 sizes are always small due to the operational 
osts. Ignoring the 
orrelation between samples overestimates222 the quantity of information 
ontained in ea
h sample leading to an underestimated varian
e. Geostatisti
al223 results present a relative median absolute deviation between 14 and 25, more in agreement with other studies224 (e.g. see Smith and Gavaris 1993; Dingsor 2005; Sousa et al. 2007; Roa-Ureta and Niklits
hek in press).225 Spatial predi
tions were 
arried out on a grid over the study area with lo
ations at 5 km of ea
h other226 resulting in 1255 lo
ations within the study area. Figure 5 presents the spatial distribution of Hake over227 the study area standardised by the maximum in ea
h year so that the year e�e
t was removed and only the228 spatial e�e
t is present on the maps. It is possible to identify persistent areas of high abundan
e on the229 west 
oast at latitudes approximately of 4150km (UTM), 4280km (UTM) and 4400km (UTM). The �rst and230 se
ond areas are known re
ruitment spots and the last one is less persistent, but also known to be an area231 of high re
ruitment.232 Abundan
e at age and year are presented in the bottom panel of Table 2 with the relative median absolute233 deviation between bra
kets. As with Yi the estimates of abundan
e at age are smaller and less pre
ise than234 the design-based ones, resulting from the fa
t that Iij a

ounts for the variability of Yi and Pi. The same235 reasoning presented above regarding the s
reening e�e
t and varian
e underestimation also applies here. In236 Figure 6 a 
omparison between design-based statisti
s and our estimates is presented with both time series237 standardised to mean 0 and varian
e 1. In general both series are similar and identify the same maxima and238 minima.239 5 Dis
ussion240 Modelling abundan
e at age requires that two main 
hara
teristi
s, the aggregation of individuals of similar241 length and the spatial patterns of abundan
e, are taken into a

ount, so that the major sour
es of variability242 are 
onsidered. The model proposed here ta
kles both issues and suggests solutions to 
ommon pra
ti
al243 problems when modelling �sh abundan
e using data from an area with spe
i�
 
hara
teristi
s. By separating244 the age 
ompositions from the age-aggregated 
at
h per unit e�ort, suitable models 
an be applied to ea
h245 variable, greatly improving the analysis of the importan
e of ea
h fa
tor. Age stru
tures were studied by246 
ompositional data analysis (Ait
hison 1982, 2003) allowing the full 
ovarian
e stru
ture of age 
ompositions247 8



to be 
onsidered. Age-aggregated 
at
h data was modelled with geostatisti
al methods (Diggle and Ribeiro248 2007) expli
itly modelling the 
orrelation between abundan
e at di�erent lo
ations. Geostatisti
al models for249 
ompositional data (Walvoort and de Gruijter 2001; Pawlowsky-Glahn and Olea 2004) are still in
ipient and250 our view is that the s
ar
ity of data provided by BTS tend to impair the use of data demanding approa
hes.251 Modelling abundan
e data requires several adjustments depending on the spe
ies, area and study obje
tives.252 Our 
ase study has allowed us to point out possible solutions but it will always be ne
essary to allo
ate some253 resear
h e�ort at understanding the individual 
hara
teristi
s of the problem at hand and �nd appropriate so-254 lutions before simulating and 
omputing yearly distributions of abundan
e at age. The appli
ation presented255 assumed that age 
ompositions were independent from age aggregated 
at
hes, an assumption supported by256 the exploratory data analysis. However, more generally, this issue 
an be solved by post-strati�
ation of the257 study area into strata where this assumption stands, either by dis
retizing the age aggregated 
at
hes and258 modelling ea
h dataset independently or by expli
itly modelling this relation.259 The problem of asymmetry and over-dispersion surfa
ed during the analysis of our dataset, 
aused by a260 large number of null or small observations and o

asional very large 
at
hes. The GLM with negative261 binomial errors used to 
alibrate the observations provide a way to sort out su
h problems, and explained262 a 
onsiderable part of the spatially unstru
tured variability, as indi
ated by the low values of τ2. On the263 other hand, the issue of null observations is restri
ted to the modelling of Pi and had a negligible impa
t on264 the geostatisti
al analysis whi
h uses the age-aggregated 
at
hes, less likely to have null observations. This265 is another major advantage of the proposed approa
h, as modelling abundan
e at age using geostatisti
s266 
an be severely limited by null observations, 
ommonly present on ages poorly represented in the sample.267 Attempts to apply geostatisti
al models separately to di�erent ages will most likely result in di�erent and268 eventually 
on�i
ting inferen
es on the 
orrelation parameters, and in
onsistent spatial predi
tions.269 Another major advantage of the proposed model is the full parametri
 spe
i�
ation allowing for Monte270 Carlo simulation methods. Simulation provides the means to over
ome di�
ulties in obtaining an analyti
al271 expression for the full distribution of abundan
e at age, while still allowing for the 
omputation of several272 statisti
s of interest. Outputs 
an also be used as inputs for larger simulation frameworks like MSE. MSE273 
onstitutes a modern and sophisti
ated approa
h to management of �sheries and e
osystems but, despite274 its formal 
omplexity, the output and advi
e obtained it is equally reliant on the quality of its inputs. The275 approa
h presented in this work is one step forward in that dire
tion.276 The methods advo
ated in this paper produ
e several abundan
e indi
ators that provide an overview of277 abundan
e along di�erent perspe
tives. The analysis of age 
ompositions provides an insight on how the278 population stru
ture evolves over time. The geostatisti
al submodel returns abundan
e indi
ators in both279 spa
e and time perspe
tives, whereas the possibilities of expli
itly modelling spa
e-time intera
tions 
an be280 9



investigated (Silva et al., 2007).281 6 A
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Table 1: Age aggregated abundan
e estimates by design statisti
s and geostatisti
s. The design statisti
swere the strati�ed mean, Ŷ , its standard deviation, σ
Ŷ
, and 
oe�
ient of variation, CV

Ŷ
. The geostatisti
swere the median, Ỹ , the median absolute deviation, MADỸ , the relative median absolute deviation, RMADỸ ,the 0.025, Q(Ỹ , 0.025), the 0.975 per
entiles, Q(Ỹ , 0.975), and the interquartile range, IQRỸ .design statisti
s geostatisti
sYear hauls Ŷ σ

Ŷ
CV

Ŷ
Ỹ MADỸ RMADỸ Q(Ỹ , 0.025) Q(Ỹ , 0.975) IQRỸ1989 130 59.2 1.7 0.03 33.6 6.6 0.2 21.2 49.7 28.41990 108 157 9.7 0.06 38.9 6.4 0.16 25.9 52.8 26.91991 80 194.1 12.2 0.06 154.8 27.4 0.18 101.3 250.4 149.11992 44 65.3 3.2 0.05 46.1 10.4 0.22 26.4 79.5 531993 58 54.1 4.5 0.08 8.1 1.5 0.18 5.5 11.9 6.51994 76 95.9 4.7 0.05 61.8 8.5 0.14 46.6 82.3 35.71995 80 85.2 4.1 0.05 59.4 8.5 0.14 42.1 80.7 38.51996 63 44.6 2.3 0.05 25.1 6.4 0.25 15.7 44.1 28.41997 51 207.2 21.5 0.1 123.9 20.1 0.16 86.9 188.4 101.41998 64 139.8 7.8 0.06 109.4 21.3 0.19 65.5 164.5 991999 71 71.2 2.5 0.04 27.3 5.8 0.21 16.1 42.2 26.12000 65 102.2 5.8 0.06 89.2 14.3 0.16 63 134.3 71.42001 58 164 15.3 0.09 140.3 23.2 0.17 91 199 107.92002 66 117.5 7.9 0.07 75 18.7 0.25 41.8 120.4 78.62003 72 55.3 2 0.04 41.5 8.4 0.2 25.6 65.2 39.62004 79 124.4 6.3 0.05 77.8 19.4 0.25 42.6 134.7 92.12005 87 214 9.4 0.04 153 29.7 0.19 93.6 235.2 141.72006 88 125.9 4.4 0.03 42.6 8.8 0.21 26.4 66.3 39.9
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Table 2: Abundan
e at age estimates by design statisti
s on the top panel and this study on the bottompanel. The design statisti
s are the strati�ed mean and between bra
kets its 
oe�
ient of variation. Theestimates provided by this study are the median and between bra
kets the relative median absolute deviation.Estimator Year 0 1 2 3 4 5Design 1989 12.9 (0.08) 20.1 (0.05) 16.9 (0.04) 7.4 (0.06) 1.5 (0.09) 0.4 (0.14)based 1990 82.1 (0.11) 45.4 (0.05) 19.3 (0.05) 7.4 (0.05) 2.4 (0.07) 0.4 (0.12)1991 56.6 (0.14) 82.4 (0.10) 36.7 (0.11) 14.6 (0.08) 3.1 (0.09) 0.6 (0.12)1992 12.1 (0.16) 20.4 (0.09) 19.3 (0.08) 10.2 (0.07) 2.7 (0.10) 0.6 (0.17)1993 23.2 (0.18) 17.1 (0.09) 8.6 (0.11) 3.6 (0.10) 1.3 (0.14) 0.3 (0.32)1994 18.5 (0.14) 51.4 (0.07) 18.2 (0.08) 5.9 (0.10) 1.5 (0.15) 0.3 (0.21)1995 2.1 (0.16) 34.6 (0.09) 37.2 (0.07) 8.1 (0.13) 2.9 (0.17) 0.4 (0.23)1996 9.0 (0.10) 15.1 (0.09) 10.8 (0.12) 6.9 (0.12) 1.9 (0.16) 0.9 (0.17)1997 40.4 (0.22) 70.4 (0.18) 83.7 (0.18) 8.7 (0.17) 2.3 (0.29) 1.6 (0.32)1998 54.0 (0.11) 46.5 (0.10) 22.8 (0.08) 12.3 (0.09) 3.0 (0.13) 1.1 (0.17)1999 9.1 (0.12) 26.9 (0.05) 25.0 (0.07) 7.8 (0.09) 2.0 (0.13) 0.4 (0.22)2000 29.9 (0.14) 39.3 (0.09) 21.4 (0.08) 8.9 (0.10) 1.7 (0.12) 1.0 (0.16)2001 50.9 (0.23) 73.9 (0.13) 22.2 (0.10) 14.3 (0.09) 2.1 (0.15) 0.6 (0.20)2002 43.5 (0.16) 37.1 (0.09) 26.8 (0.08) 7.5 (0.11) 2.1 (0.15) 0.4 (0.26)2003 5.9 (0.08) 28.6 (0.05) 13.2 (0.08) 6.1 (0.09) 1.3 (0.15) 0.2 (0.27)2004 42.5 (0.10) 48.6 (0.08) 22.8 (0.08) 7.9 (0.11) 1.7 (0.16) 0.8 (0.18)2005 105.8 (0.08) 67.5 (0.05) 30.2 (0.06) 7.8 (0.10) 2.0 (0.13) 0.7 (0.20)2006 44.7 (0.07) 35.4 (0.06) 32.6 (0.06) 10.0 (0.09) 2.5 (0.13) 0.6 (0.21)This study 1989 2.9 (0.25) 9.8 (0.21) 12.2 (0.20) 6.4 (0.22) 1.6 (0.24) 0.7 (0.25)1990 3.9 (0.26) 13.6 (0.20) 11.9 (0.19) 6.0 (0.23) 2.4 (0.24) 0.7 (0.25)1991 14.8 (0.32) 51.3 (0.25) 52.0 (0.23) 25.5 (0.26) 7.0 (0.30) 2.0 (0.30)1992 2.7 (0.40) 9.1 (0.31) 13.5 (0.27) 13.8 (0.26) 4.7 (0.34) 1.5 (0.38)1993 1.2 (0.30) 2.6 (0.24) 2.2 (0.23) 1.2 (0.29) 0.5 (0.29) 0.2 (0.33)1994 5.2 (0.24) 26.3 (0.21) 15.3 (0.20) 10.5 (0.23) 3.3 (0.26) 0.9 (0.27)1995 1.0 (0.30) 19.0 (0.19) 27.5 (0.16) 8.2 (0.19) 2.8 (0.23) 0.6 (0.26)1996 2.6 (0.34) 8.7 (0.30) 6.4 (0.28) 4.6 (0.28) 1.7 (0.33) 1.1 (0.32)1997 2.9 (0.38) 25.9 (0.29) 78.4 (0.18) 11.7 (0.25) 2.5 (0.29) 1.8 (0.31)1998 16.2 (0.36) 29.0 (0.26) 27.5 (0.23) 24.5 (0.26) 6.8 (0.31) 2.7 (0.31)1999 1.7 (0.31) 8.4 (0.26) 12.3 (0.21) 3.7 (0.26) 0.7 (0.28) 0.2 (0.30)2000 7.8 (0.32) 25.6 (0.23) 32.8 (0.19) 16.6 (0.22) 3.7 (0.24) 2.5 (0.25)2001 11.7 (0.31) 49.1 (0.25) 42.7 (0.22) 29.5 (0.24) 3.8 (0.28) 1.8 (0.29)2002 12.1 (0.32) 23.7 (0.3) 26.8 (0.27) 7.8 (0.29) 2.5 (0.32) 0.9 (0.35)2003 3.6 (0.27) 17.9 (0.24) 12.7 (0.22) 5.1 (0.26) 1.4 (0.29) 0.5 (0.28)2004 15.7 (0.29) 37.5 (0.25) 17.1 (0.3) 4.5 (0.33) 1.5 (0.32) 1.0 (0.33)2005 37.2 (0.26) 68.0 (0.21) 33.8 (0.24) 9.5 (0.26) 2.5 (0.28) 1.3 (0.29)2006 5.3 (0.29) 13.0 (0.23) 15.9 (0.23) 6.3 (0.24) 1.5 (0.27) 0.5 (0.28)
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Figure 1: Yearly maps with lo
ations of hauls (+) and observed 
at
hes of Hake (Merlu

ius merlu

ius)during the Autumn series of the Portuguese bottom trawl survey. The gray 
ir
les are proportional to thelogarithm of the numbers of individuals 
aught per hour. The full line represents the Portuguese 
ontinental
oast.
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Figure 2: Age 
ompositions empiri
al distribution obtained by parametri
 bootstrap. The full 
ir
le repre-sents the median proportion and the gray lines represent the 
on�den
e interval 
omputed by the 0.025 and0.975 per
entiles.
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Figure 3: Yearly priors and posteriors for the 
orrelation range φ and the relative nugget τ2

REL used for thegeostatisti
al analysis of the 
alibrated dataset. The dashed line represents the priors for ea
h parameter,kept 
onstant for all datasets. The full line represents the posteriors obtained per year for ea
h dataset.
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Figure 4: Yearly abundan
e estimates by design statisti
s (dashed line) and geostatisti
s (full line). Thebla
k 
ir
le represents the median abundan
e and the gray lines represent the 
on�den
e interval 
omputedby the 0.025 and 0.975 per
entiles.
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Figure 5: Spatial distribution of age aggregated abundan
e by year, standardised to the se
ond fortnight ofO
tober. The gray degrees are proportional to the number of individuals 
aught by unit e�ort, res
aled tothe maximum estimate within ea
h year. The bla
k 
olor represent 1 and the white 
olour represents 0.
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Figure 6: Abundan
e at age and year standardised to have mean 0 and varian
e 1. Design estimates indashed line and geostatisti
al estimates in full line.
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