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Dealing With Zeros and Missing Values in
Compositional Data Sets Using Nonparametric
Imputation

J. A. Mart'in-Fernandez? C. Barcel6-Vidal,?
and V. Pawlowsky-Glahr?

The statistical analysis of compositional data based on logratios of parts is not suitable when zeros are
presentin a data set. Nevertheless, if there is interest in using this modeling approach, several strategies
have been published in the specialized literature which can be used. In particular, substitution or
imputation strategies are available for rounded zeros. In this paper, existing nonparametric imputation
methods—both for the additive and the multiplicative approach—are revised and essential properties
of the last method are given. For missing values a generalization of the multiplicative approach is
proposed.
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INTRODUCTION

To understand the “zero problem” related to compositional data, we must under-
stand the nature of this type of data. As stated in Aitchison (1986), the sample
space of compositional data is the simp&X defined as

SP ={[xe, %2, ..., %p] 1 Xj > 0;j =1,2,...,D; Xy + X2+ --- + Xp = €},
1)

wherec can be 100, 1, 1) or any other constant depending on the units of
measurement. Although the valueois irrelevant from a mathematical point of
view, and was therefore set equal to 1 in the original definition, we keep it to avoid
confusion in daily practice.

The definition ofSP in (1) reflects two characteristics of compositional ob-
servations. One, which receives general agreement, is that they are proportions of
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some whole and therefore positive and of constant sum. The second, frequently
discussed, is associated to the metric, which is considered to be appropriate for this
type of data. We agree with Aitchison (1986) in that compositional data reflect only
relative magnitude, and thus interest lies in relative—and not absolute—changes.
The usual Euclidean metric in real space measures absolute changes, whereas
relative changes can be measured using some logarithmic scale. Thus, a proper
study of relative variation in a data set can be based on logratios, and dealing
with logratios excludes dealing with zeros, hence the condition of observations are
strictly positive. Nevertheless, it is clear that zero observations might be present
in real data sets, either because the corresponding part is completely absent, or
because it is below detection limit. Therefore, a strategy—compatible with our
perception of compositional data—is needed on how to deal with zeros in a given
data set.

To develop this strategy we first introduce basic concepts related to the vector
space structure of the simplex, proceed afterwards with the classification of zeros
into essential zeros and rounded zeros, and then we review existing replacement
methods for rounded zeros, to analyze their properties and to compare their behav-
ior. To situate the reader, we start with a summary of the most usual nonparametric
approaches for missing values with noncompositional data. With the main features
of these approaches in mind, we revise first, from a theoretical point of view, the ad-
ditive replacement method suggested by Aitchison (1986), whose drawbacks have
been described from an empirical point of view by Tauber (1999) in a hierarchical
cluster analysis context. Next, we present the multiplicative replacement method
suggested in Mami-Ferrendez, BarcekVidal, and Pawlowsky-Glahn (2000) and
we analyze its properties. In particular, it is shown that the simple replacement
method, which is frequently used in experimental sciences as an heuristic strategy,
is just an equivalent form of multiplicative replacement. To illustrate the methods,
we present three examples where we compare the behavior of the approach pro-
posed in Aitchison (1986) with the alternative approach presented in this paper.
Finally, we propose a generalization of the multiplicative replacement of zeros to
the substitution of missing values in compositional data sets.

LINEAR VECTOR SPACE STRUCTURE OF THE SIMPLEX

As stated in Mant\-Ferréndez, BarcekVidal, and Pawlowsky-Glahn (2000),
itis easy to see that thperturbation operationp @ x = C[ p1X1, P2X2, - - ., PoXpl,
defined onSP x SP, and thepower transformatione ® x = C[X%, X%, ..., X&],
defined on Rx SP, induce a vector space structure in the simplex. In both oper-
ations we consider thelosure operatof' C” defined byC(w) = c[w1/)> " wj, wa/
Y wj,...,wp/Y wjl, wherew € IRE. Once we have a vector space structure,
we need a compatible distance, as in most statistical techniques a distance between
observations is explicitly or implicitly assumed. A distance, compatible with the
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vector space structure of the simplex, is the Aitchison distance
da(x, x*) = de(clr(x), clr(x*)), 2

wherex, x* are compositions is°, d. represents the Euclidean distance if,R

and the centered logratio transformation is defined byxk([In(x1/9(x)), ...,
In(xp/g(x))], with g(x) = (]_[jD=l x;)Y/P. The simplex, with the perturbation op-
eration, the power transformation and the Aitchison distance, is then a linear
vector space. See Aitchison (2002), Billheimer, Guttorp, and Fagan (2001) and
Pawlowsky-Glahn and Egozcue (2001, 2002) for further details.

The properties of the Aitchison distance (2) have been extensively discussedin
Martin-Ferreandez, Barcel-Vidal, and Pawlowsky-Glahn (1998a) and in Aitchison
and others (2000). Nevertheless, this distance has its “Achilles heel.” The presence
of zero values in a data set prevents its application, as it makes it impossible
to consider all the ratiosx{/xx, 1 < j < k < D). Hence we have a powerful
mathematical structure on which to build on, and one weakness associated to the
presence of zeros in a data set, thus justifying the need for replacement strategies.

Another important concept in our approach is the concept of subcomposition.
If our interest is focused on some of the parts of the composition we must select
these parts and form theiubcompositioriThe subcompositiors € S of a com-
positionx € SP is defined axs = C(SX), whereSis a (S x D) selecting matrix
with all elements zero except one in each row and at the most one in each column
(Aitchison, 1986). Note that a subcomposition preserves the ratios between the
selected parts.

Before proceeding, note that the definition of a proper sample space for com-
positional data can be based on the concept of classes of equivalence. In fact, a
compositional observation is nothing else but a ray from the origin into the positive
orthant of D-dimensional real space JR(Barceb-Vidal, Martin-Ferrgndez, and
Pawlowsky-Glahn, 2001). Any poiat € IRE on one ofthose rays can be projected
on an arbitrary surface, as long as the projection is one to one. A possible surface
is given by the hyperplane containidt, thus reducingSP® to a representation
of those classes. Another possible representation would be given by an hyperbolic
surface; this representation, although unusual, is important for interpretation of on-
coming results ( BarcelVidal, Martin-Ferréndez, and Pawlowsky-Glahn, 2001).
Projection onSP is performed applying thelosure operatotC” to w € IRE. In
generalv # C(w), and this property will hold for any other representation as well.
Nevertheless, despite the fact that the representation might change, the fact that
the important issue is quantification of relative differences will not.

ESSENTIAL ZEROS AND ROUNDED ZEROS

In compositional data analysis we distinguish two kinds of zeessential
zeros—or absolute absence of the part in the observation—+aumtded zeros-or
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presence of a component, but below detection limit. Its different nature implies
that the treatment of the two kinds of zeros should be different. Essential zeros
are present in many applications. For example, in an analysis of an household
budget, as described in Aitchison (1986), we can find some family with zero
value on the commaodity group “tobacco and alcohol.” For many problems which
require a statistical approach, like factor analysis or hierarchical cluster analysis,
it seems reasonable to interpret the presence of an essential zero in a part either
as an indication that the composition belongs to a different group or population,
or as an indication that the component has no significance for the purpose of the
study. Thus, in the above example relative to the household budget, we would
either divide the sample in households that spend or spend not some part of their
budget in tobacco or alcohol, or we would amalgamate the proportion spend in
this commodity group to another commaodity group. If the approach assumed as
suitable is to divide the sample, then a statistical analysis of any kind would be
applied to each subsample separately. Otherwise, after amalgamation of different
parts, the analysis would be performed on the full data set.

On the contrary, when we consider that one component has a rounded zero,
i.e. when we consider that this value denotes not that the part is completely ab-
sent, but rather that no quantifiable proportion could be recorded to the accuracy
of the measurement process, then it seems not sensible to divide the sample into
subsets according to the presence or absence of zeros. One typical example of
rounded zero is the zero in a component of a particular mineral which indicates
that no quantifiable proportion of the mineral has been recorded by the measure-
ment process. Because this kind of zeros is usually understood as “a trace too small
to measure,” it seems reasonable to replace them by a suitable small value, and
this has been the traditional approach. But this replacement is not without prob-
lems, as stated e.g. by Tauber (1999) and by Md&#€rreindez, BarcelVidal, and
Pawlowsky-Glahn (2000) for the additive approach. Thus, the principal problem
in compositional data analysis is related to rounded zeros. One should be careful
to use a replacement strategy that does not seriously distort the general struc-
ture of the data. In particular, the covariance structure of the involved parts—and
thus the metric properties—should be preserved, as otherwise further analysis on
subpopulations could be misleading.

REPLACEMENT STRATEGIES FOR NONCOMPOSITIONAL DATA
Parametric and Nonparametric Techniques

Let Y be a data set with missing values in real space Rthe goal is to
perform a cluster analysis based on a hierarchical clustering method using the
Euclidean distancé, first it is necessary to complete the matrix of distances
between observations. Several strategies have been suggested in the literature for
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that purpose, which can be classified into parametric and nonparametric techniques.
Among the first ones we find the EM algorithm and its extensions, the multiple
imputation techniques and the Markov Chain Monte Carlo method (Allison, 2001,
Little and Rubin, 1987; Shafer, 1997). They all provide a set of flexible and reliable
tools for inference in large classes of missing-data problems. All these tools rely
on fully parametric models for multivariate data.

The group of nonparametric techniques consists, essentially in a family, of
strategies known as “imputation.” Imputation is equivalent to forcing the incom-
plete data set into a rectangular complete-data format by inserting a quantity for
each missing value. Then, fromthe completed data set, the multivariate analysis can
be performed. In those cases where the matrix of distances is calculated from the
completed data set, such “imputation” procedures are not recommended because,
whenever very similar or identical estimates are used on different observations,
the similarity between these observations are grossly exaggerated (Krzanowski,
1988). In this case, an alternative strategy to “imputation” procedures is suggested
by Krzanowski (1988), which can be synthesized as follows:

(i) omitany componentthathas amissing value when computing the distance
between two observations and work only with those components that have
all values present for both the observations concerned,;

(ii) if the previous step means working with components instead dd,
inflate the resulting distance by a facioy S.

Imputation Methods: Properties

As exposedin Little and Rubin (1987), the principal nonparametric imputation
methods in survey practice include several strategies: mean imputation, hot deck
imputation, cold deck imputation, and composite methods. Following Sandford,
Pierson, and Crovelli (1993), when the missing values are actually censored data,
that is, when the values for some components are reported as “less than” a given
threshold value, a simple imputation can be considered. For a “small” proportion
of “less than” values (not more than 10%) a simple-substitution method using a
value equal to 35 of the threshold value is suggested. But what is important for
our purposes is that all these imputation methods have the following properties in
common:

P1. The canonical projectidri(y) on the nonmissing components of observation
y € RP is identical to the same projectidfi(z) of the replaced observation
z € RP. Thus, the covariance structure of the components without missing
values is preserved.

P2. Consider two observatiogsy* € RP having “common” missing values, and
z, z* their replaced observations. It holds that— yj = z; — zj, whereyj,
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yj, are nonmissing values, aag z; the corresponding replacements. Further-
more, if the imputation method assigns the same replacement value to every
missing componery; of the two observations, theii(z, z*) does not depend

on the imputed values and it is identical to the Euclidean distance between the
projectionsdg(T1(y), I1(y*)).

P3. Consider that ory* have censored values and these censored values are not in
the same component. It holds that lih(z, Z*) = 400, wherez, z* are their
replaced observations adds the imptited value. Note that in this property we
are considering that the sample space of the components is the real space, and
then we can consider th&t— +oo.

REPLACEMENT STRATEGIES FOR COMPOSITIONAL DATA
General Remarks

Certainly, any replacement strategy—parametric and nonparametric—has its
advantages and disadvantages. However, in this paper we do not discuss a best
strategy. Our goal is to provide a suitable imputation procedure for compositional
data. This goal is motivated by the observation that the main difference between
parametric and nonparametric strategies is that the first one decides the imputed
value based on parametric models. Nevertheless, both strategies must be based on
a suitable imputation procedure. Therefore, as a first step, we focus our interest in
nonparametric imputation.

Many authors (Allison, 2001; Little and Rubin, 1987; Shafer, 1997) do not
recommend the imputation procedures because they can distort the covariance
structure, biasing estimated variances and covariances towards zero. Although
this weakness of imputation methods is certainly a critical problem, the strat-
egy suggested by Krzanowski (1988) has an even more important weakness:
it is not suitable at all for compositional data. To see that this is so, consider
the following example. Take three compositional observatioes[0, 0.8, 0.2],

x* =[0.95,0.04, 0.01], andx’ = [0.06, 0.76, 0.18]. The strategy of Krzanowski
implies comparing the subcompositions formed by the second and third compo-
nentsxs = [0.8, 0.2], xs* = [0.8, 0.2], andxs’ = [0.81, 0.19]. Assuming that the

zero in sample is actually a rounded zero we expecindx’ to be more similar
thanx andx*. Nevertheless, we obtain théf(xs, Xs*) = 0 andd,(Xs, Xs') = 0.07
(Fig.1). Therefore, in the present paper, we focus our attention on imputation strate-
gies as a honparametric strategy without the correction suggested by Krzanowski
(1988).

By analogy, a suitable imputation method for compositional data must have
properties as reasonable as the properties of the methods for noncompositional
data—see properties P1, P2, and P3 under Imputation Methods: Properties sec-
tion. For compositional data we consider the sample space$® l@ad we know
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Figure 1. Representation inS® of compositions x = [0, 0.8,0.2], x* =
[0.95,0.04,0.01], X' =[0.06,0.76,0.18], and their subcompositiongs =
[0.8,0.2], xs* =[0.8,0.2], andxs’ = [0.81, 0.19]. Note that in this represen-
tation the three points, xs, andxs* overlap.

that, as mentioned above, a measure of difference compatible with the vector space
structure ofSP is the Aitchison distance. Thus, in property P1 the concept of canon-
ical projection on the nonmissing components must be replaced by the concept
of subcomposition on the nonmissing parts. Analogously, because perturbation is
the internal operation is®, the difference invariance in property P2 must be re-
placed by the perturbation invariance. Moreover, in property P2 it seems logical to
expect that a replacement rule of zeros has the property that the Aitchison distance
between replaced compositions does not depend on the imputed value when the
replaced compositions come from compositions with common zeros. In relation
to the suitable sample space (1), in property P3 we must replace+oo by

8§ — ¢~ (convergence from the left) add— —oo by § — 0t (convergence from

the right), wherec is the constant value used for the constraint in (1). Note that
any replacement rule of rounded zeros in compositional data is forced to modify
the non-zero values because the sum-constrain must be verified.

With the above features in mind, we are motivated to define a suitable re-
placement method for rounded zeros in compositional data. Nevertheless, first we
will revise, from a theoretical point of view and for the purpose of comparing
properties, existing replacement methods.
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Additive Replacement Strategy

In Aitchison (1986) the following replacement strategy for rounded zeros is
suggested. Consider that a compositioa SP containsZ rounded zeros, then
x can be replaced by a new compositioe SP without zeros according to the
following replacement rule:
8(Z+1)(D-2) ifx =0
r — D2 9 ) ] — ] 3
. {x,——‘S(ZD;})Z, if xj >0, ®)

wheres is a small value, less than a given threshold. Note that the constant sum-
constraint (1) of compositional data forces to modify both the zero and the nonzero
values. Note also that we can generalize rule (3) using a different threshold
every partx;. The problem is that this replacement rule is additive for nonzero
values and is thus not coherent with basic operations of the vector §¥ace
Replacement rule (3) has the following properties:

i. The partr; in (3) depends not only on the threshaéldut also on the
number of partd and the numbeF of zeros. Two compositions and
x* containing a different amount of zeros but some of them in the same
parts, can be replaced byandr* having different values in these parts.

ii. If xandx* have “common” zero values, i.e. the same amount of zeros
and in the same parts, amdr* are their replaced compositions, then
it holds that the value of the Aitchison distance (2) is not preserved,
da(r, r*) # da(Xs, X), wherexs andx; are subcompositions of and
x* on their nonzero parts. Furthermore, it is easy to showdgat r*)
depends od and that

z Xj
H 2 *\ _ A2 * 2
Jim d3(r. 1) = &30 ) + 5575 Zln<x*> @

Xj#0

i.e., the distance only depends on the nonzero parts of the compositions.
iii. If x orx* have some zero values but these are not “common,” then

lim da(r,r*) = +oo, and lim da(r, r*) = +o0.
§—0t §—c~
iv. If x has more than one zero value, then
b X

—, forx; > 0, x> 0.
Mk Xk
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Furthermore, the value of ratiog/r, depends on the thresholds. There-
fore, for any data set where some parts do not have zeros, the covariance
structure of the subcomposition on these parts is not preserved. Thus, any
subcompositional analysis obtained by multivariate methods based on the
covariance structure could be seriously distorted.

In a hierarchical cluster analysis spurious classifications may be obtained if very
small values off are used, as in this case compositions with zero parts tend to
group together according to the number and the position of zeros. This is due to
the fact that the Aitchison distance between two replaced compositions is extremely
sensitive to changes in the threshélhen using (3), as illustrated empirically in
Tauber (1999). This is due to the additive character of the imputation method and
not to the logratio approach, as will be shown later. Thus whiemds to zero the
resulting classification tends to the same classification that we would obtain if the
zeros were considered as essential zeros (W&dTrrendez, BarcekVidal, and
Pawlowsky-Glahn, 2000).

Simple Replacement Strategy

Actually, the additive replacement rule (3) is not the only method used to
replace rounded zeros in the experimental sciences. Many researchers simply re-
place the rounded zeros in a compositkdsy a small quantity to obtain a vector of
positive componentsy € RY. Then, they apply the closure operatok= C(w).

This strategy can be expressed by the following replacement rule

——¢ &, ifx;=0
C+Zk\xk:0 Sk ] ] y
C

C+Zk\xk:0 Sk

®)

r = .
! Xj, ifx;>0,

where$; is the imputed value on the paxf andc is the constant of the sum-
constraintin (1). Note that with this procedure the resulting imputed value depends
not only on the thresholdg but also on the numbeZ of zeros ofx. Thus, when
fixing theSj , two compositions andx* containing a different amount of zeros but
some of them in the same parts, can be replacediogr * having different values

in these parts, something well known from the additive strategy discussed earlier.
Nevertheless, it would be possible to find suitable values for the thresholds such
that equal values would result. This possibility, together with the fact that the pro-
cedure implies a multiplicative modification of the nonzero values sbmething

that can be directly associated to the internal operation of the vector SPace.

the perturbation operation, suggested an alternative formulation of a multiplica-
tive replacement rule (Marnt-Ferrandez, Barcek-Vidal, and Pawlowsky-Glahn,
2000), whose properties are developed in the following section. A similar approach
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has been used in Fry, Fry, and McLaren (1996). Itis based on changing the additive
component in the additive approach to a multiplicative component, but keeping
the replacement value for zero components in (3). They justified this alternative
by the fact that the additive replacement rule does not preserve ratios, whereas the
multiplicative does, although without further discussion of properties.

Multiplicative Replacement Strategy

Let x € SP and assume it hag zeros. We propose to replagewith a
compositiorr € SP without zeros using the expression

5], if Xj =0, 6
1= {(1— BoscOyy;,if x> 0, ©)

whereg; is the imputed value on the paxf, andc is the constant of the sum-
constraint (1). The modification of nonzero values in (6) is multiplicative, as sug-
gested by the simple replacement rule (5). Furthermore, it can be derived from
(5) takingSj =3jc/(c— Zquk:o 8k), and vice-versa, given that if the imputation
values; = 8; ¢/(C+ Y j_o) is used in (6) then the simple replacement rule
(5) is obtained. But the expression in (6) enhances the properties of the multi-
plicative approach in counterposition to the properties of the additive approach,
thus making the alternative much more intuitive. It has the following reasonable
properties not satisfied by the additive replacement (3):

P1. Itis “natural” in the sense that, if the imputed valdgsn a compositiorx
are equal to the “true” censored values, theacovers the “true” composition.
Moreover, the imputed valug does not depend on the amount of péebts
neither on the numbez of zeros. This property is not explicitly satisfied by
the simple replacement strategy (5), although it could be forced by taking
§j = 8;¢/(C — Yjpqo ) for givens; “true” values.

P2. Itis coherent with the basic operations in the simplex: if a selecting nsatfix
nonzero parts of compositioris considered, anxks = C(SX) is the subcompo-
sition obtained, denoting bys = C(Sr) the subcomposition derived from the
replacement vector, the following properties hold:

(a) subcomposition invarianeexs = rs.

(b) perturbation invariance-for allp € S°, (p®r)s = (p ® X)s;

(c) power transformation invarianeeforalla € R, (@ ® r)s = (o ® X)s;
These properties imply that this replacement strategy is coherent with the vector
space structure defined dif. Above relations between the basic operations
and replacement rule (6) are illustrated in Figure 2. Consider the composi-
tionsx = (0, 1/3, 2/3) andx* = (0, 0.64, 0.36), and their replaced composi-
tionsr = (0.05, 0.32, 0.63) andr* = (0.05, 0.6, 0.35) using (6) with§ = 0.05.
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X2 X3

p23

i
*
£ 4 X
x* X
Figure 2. Relations between multiplicative replacement (6) and basic
operations of vector spac®.
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Compositionsp23 = x* @ x~* andp =r* @ r~! are the perturbations that
transformx to x* andr to r*, respectively. Certainly, when we calculate the
compositionp23 we are working only with the nonzero partsxadindx*. The
dashed lines represent the projections formed by périsnd X3. We can see
that compositiong andx*, and their replaced compositiongndr* have the

same subcomposition.

P3. Ratios are preserved:/rx = X;/x for all nonzero values;, x.. We want
to emphasize that this preservation of the ratios implies that the covariance
structure of components without zeros is preserved. Therefore, any subcompo-
sitional analysis based on the nonzero values of the initial data set or based on

the replaced data set gives the same results.

P4. Wherx andx* have “common” zero values, and the replaced compositions

andr* are obtained using identical imputation valugs= 47, then

(@) r; /1] =X /%] for all nonzero values;, X, and the Aitchison distance

da(r, r*) does not depend on the imputed values.

(b) Despited,(r, r*) is not equal tala(Xs, X%), the following equality holds:

2

Z Xi
2 ¥y _ A2 * J
da(r, r) = da(XS, Xs) + m Z In (X_]*> s

Xj #0
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whereZ is the number of common zerosimndx*. Itis important to note
that above expression is the same as (4) whep lgn for the additive
replacement.
P5. If x or x* have some rounded zeros but these zeros are not “common,” it
holds thataligg da(r, r*) = +o0, andaﬂrg"n_ da(r, r*) = +o00. Note that, as we

have explained above, analogous results are obtained in real space. Thus, this
property is not a characteristic weakness of the Aitchison distance. It becomes
evident if we represent compositional data on an hyperbolic surface instead of
onSP.

Above properties show that the multiplicative replacement (6) is more suitable than
the additive replacement (3) to replace rounded zeros in compositional data. After
replacing zeros we can perform any multivariate analysis and, logically, the results
of this analysis should be subjected to some form of sensitivity analysis. In hier-
archical cluster analysis context, Tauber (1999) and Zhou (1997) have analyzed,
from a descriptive point of view, the behavior of the additive replacement (3). The
most important conclusion of their work is that, if the valuesaends to zero,

then “spurious” clusters appear in the classification. This conclusion was deduced
from the observation that every “spurious” cluster is formed by the data with a
“common” zero, i.e. the data with the same amount of zeros and in the same parts.
The authors attribute this fact to the logratio transformation, but we can conclude
that “spurious” clusters depend on the imputation procedure. Note that this phe-
nomenon happens also when we consider data in real space with the Euclidean
distance—see property P3 in page 9. In Aitchison (1986), for a sensitivity analysis
the range% < § < 25, wheres; is the maximum rounding-off error, is suggested

as reasonable. Sandford, Pierson, Crovelli (1993) consider as a suitable imputed
value 0.55 of the threshold. Thus, this suggested range seems to be appropriate. In
the following case study we use the range given by Aitchison (1986) to compare
the behavior of both replacements (3) and (6).

CASE STUDIES
The “Halimba Bauxite Deposit” Data

The first data set, provided by G. Bardossy from the Hungarian Academy of
Sciences, and previously used in Mateu-Figueras, Bawéglal, and Pawlowsky-
Glahn (1998), corresponds to the subcomposition@4J SiO,, Fe03, TiO,,

H,0, Reg] of 332 samples from 34 core-boreholes in the Halimba bauxite deposit
(Hungary). Let us call this data s&t The sixth part Resconsists in a resid-

ual part of the composition, i.e., it is equal to (100 —A@¢ + - - - + H20))%.
Some univariate descriptive statistics of the six parts are given in Table 1. Note
that the smallest values appear in components,SitD,, and Reg. Following
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Table 1. Univariate Descriptive Statistics for Halimba Data Set

265

Attribute Al,O3 SiO, Fe,O3 TiO2 H>O Reg
Minimum 0.4680 0.0020 0.1400 0.0090 0.1060 0.0020
First quartile Q1) 0.5380 0.0125 0.2235 0.0260 0.1175 0.0110
Median Q2) 0.5610 0.0280 0.2400 0.0290 0.1215 0.0160
Third quartile Q3) 0.5760 0.0490 0.2540 0.0310 0.1255 0.0230
Maximum 0.6220 0.1450 0.3210 0.0390 0.1590 0.0950

Aitchison and Greenacre (2002), the data set can be represented in a biplot diagram
(Fig. 3). In this biplot, where the proportion of total variability retained is equal to
96.71%, we can verify the larger variability in the second and sixth components, i.e.
In(Si0,/g) and In(Reg/q), whereg is the geometric mean of the sample. Circled
observations represent compositions considered as outliers of an additive logistic
normal distribution (Aitchison, 1986) because their atypicality index is greater

than 0.999.

As suggested in Aitchison (1986), the compositional variation array provides
a useful descriptive summary of the pattern of variability of compositions. In
this array we set out the logratio variance varfin{ X,)] (j =1,2,...,5k =

O

O

(X))

Figure 3. Biplot of the Halimba data set (see text for more details).
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Table 2. Variation Array of Halimba Data Set (Estimates): Upper Triangle vaXiii(X)];
Lower Triangle E[InKk/ X;)] (See Text for More Details)

k
j 1(Al203)  2(SiQ;)  3(FeOs)  4(Ti0z)  5(H0)  6(Res)

1(Al03) — 0.8946  0.1288 0.1793 0.0885  0.6105
2(Si%) 3.1314 — 0.9095 0.9703 0.8515 0.9321
3(Fe0s3) 0.8464  —2.2850 — 0.1915 0.1519  0.6194
4(TiOy) 29981 -0.1333  2.1516 — 0.2214  0.6603
5(H,0) 15140 -1.6174 0.6676 —1.4841 — 0.5566
6(Resg) 3.5284 0.3970  2.6819 0.5303  2.0144 —
j +1,...,6) as an upper triangular array and we use the lower triangle to dis-

play in position {, k) an estimate of the logratio expectation Efa¢ X;)] (k =
1,2,...,5j=k+1,...,6). The variation array of the Halimba data 3eis

given in Table 2. Observe that the sign of the logratio means corroborate that the
components Sig TiO,, and Reg take smallest values. The larger values of lo-
gratio variance appear when $iOr Reg are involved. Finally, as introduced in
Aitchison (1997), we can compute the compositional geometric réeamd the

total variability, totvark), of the data seX defined as

A 1 -
§=Clg1 g -, gol; totvar) = =5 “dix, §), Y
i=1

n 1/n
9 = (l—[ Xij)
i=1

symbolizes the geometric mean of pAitin data seX. The relation of these mea-
sures of central tendency and dispersion with the Aitchison dis@yttave been
extensively analyzed in Mart‘Ferrdndez, BarcekVidal, and Pawlowsky-Glahn
(1998b). In the case of the Halimba data Xetve obtainé = [0.5644 0.0246
0.2421,0.0282 0.1242 0.0166] and totvaiX) = 0.9718.

To illustrate our approach, every observed valueXasmaller than 0.01 is
transformed to a zero value. We callF the compositional data set resulting
from this procedure. As a consequence, 105 compositions*diave at least
one zero. Moreover, out of the 3326 values in the data matrix, 128 are zero.
Note that this amount of zero values is less than 10% of the total amounk(832
Therefore, it seems reasonable to consider a simple-substitution (Sandford, Pier-
son, and Crovelli, 1993). These zeros are mainly concentrated in the components

where
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SiO, and Res. Only one zero appears in the fourth component,;Ti@s can
be deduced from Table 1, the components®| Fe,03, and HO will have no
zeros inX*.

Sensitivity Analysis

We assume the zeros ¥f to be nonessential zeros, i.e. rounded zeros. Be-
fore applying any multivariate method, the zeros have to be replaced. Our aim is
to compare the performance of the additive replacement approach proposed by
Aitchison (3) and the multiplicative approach (6) proposed in this paper. Combin-
ing 10 different valuesgy = 0.001xk, (k =1, 2,..., 10), with both replacement
rules, 20 data sets without zeros are obtaified:, (k =1, 2, ..., 10), using the
additive method (3) and threshdig andRn,x, (k =1, 2,..., 10), using the mul-
tiplicative method (6). Our aim is to compare the sensitivity of both replacement
rules in relation to the valué.

Because we know in this case the original dataXsethe sensitivity with
respect to observed values ¥fcan be analyzed. We perform this analysis us-
ing two different measures. We calculate the Aitchsion distaiabe,r;) (i =
1,2,...,332) between the original compositiane X and the replaced compo-
sitionr; obtained fromx* € X*. Then, as afirst measure of distortion, we consider
the mean of these distances squared:

332
izldi(xi, r)

d=
ms 332

8)

By analogy to usual least squares methods, it seems reasonable to assume that the
smaller msd for a given replacement value, the better the strategy applied. Note that
for compositions without zeros it hold(x;, ri) = 0. Thus, msd (8) is a measure
of distortion related to compositions with zero values. Actually, we could modify
the denominator in (8) by subtracting the amount of compositions without zeros.
Nevertheless, it seems to be more sensible that a measure of distortion takes into
account the total amount of compositions.

As asecond measure of distortion we consider the ssesglardizedesidual
sum of squares) defined by

3o (dali. Xj) = c(ri. 7))

stress=
2oy d2(xi, xj)

9)

This measure, used for analogous purposes in the same manner in amn Mart’
Ferrdndez, Olea-Meneses, and Pawlowsky-Glahn (2001), is one of the basic el-
ements of multidimensional scaling theory (Cox and Cox, 1994). Note that if
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Xi, Xj € X are two compositions without zeros, it holds thag(x;, x;) —

dy(ri, rj) = 0. Therefore, these distances do not affect the stress. In a different
manner than in msd (8), in stress (9) we measure the distortion due to composi-
tions where both have zero values, as well as the distortion due to compositions
where only one of them has zero values.

Figure 4 shows the behavior of the two measures, msd and stress, when either
the additive replacement (3) or the multiplicative replacement (6) are applied. Note
that the multiplicative replacement (dashed lire- —) shows a better behavior
in both measures of distortion. We want to emphasize that the best results are
obtained fors close to 0.0065. This fact is coherent with the procedure followed
to introduce artificially zero values iX because the compositional geometric
mean of the compositions belongingXowith values below @1, is the composi-
tion (0.5793, 0.0058, 0.2572, 0.0322, 0.1181, 0.0075). Observe that the imputed
value Q0065 is close to the second and sixth part of this geometric mean. This
result confirms that the multiplicative replacement (6) is a “natural” substitution
(property P1).

The measures msd (8) and stress (9) are only useful when the original data
set is known. Thus, we analyze also the sensitivity of the measure of central ten-
dencyé and the measure of dispersion totv&r(see (7). Figure 5(A) shows the
variation ofdg(é, €) when either the additive replacement (3) or the multiplica-
tive replacement (6) are applied, where- C[1, 1, ..., 1] € S8 is the center of
SP. Note that we are analyzing the norm of the compositional geometric mean.
Figure 5(B) shows the variation of totv&{ x) and totvarRn, k). For comparison
purposes we have drawn (dotted line-') the value of these measures for the
original data seX. We observe that the multiplicative replacement (6) has a better
behavior than the additive replacement (3). Note that the best results are also ob-
tained forés close to 0.0065. Because our aim is to investigate the reason for this
different behavior of both measures with respect to the additive replacement (3)
and the multiplicative replacement (6), we analyzed the variation array of the data
setsR,x andRnk, (k=1,2,...,10). Table 3 shows only the variation array of
data setf, 1 andR, 10. These data sets are obtained when we apply the additive
replacement (3) with, respective/= 0.001 ands = 0.01. For practical limita-
tions, the variation arrays of the other data $etx; (1 < k < 10) are omitted.
Table 4 shows an analogous information when we apply a multiplicative replace-
ment (6). In comparing the variation array of the data)¢éésee Table 2) with
the variation array resulting of both replacements, we observe that, in most of the
cases, when the multiplicative replacement (6) is applied, the range of sensitivity
of log-means and log-variance show better results. It is worthwhile to remark that
in Table 4, when the parts involved in the log-means and the log-variance are
parts without zeros, i.X;, X3, Xs, we obtain—as expected—exactly the same
results (see bold values in Table 4) as in Table 2, given that the subcompositional
covariance structure is preserved.
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Table 3. Variation Array of Data Sets Resulting From Additive Replacement With
8 = 0.001 ands = 0.01 (Ra,1—Ra,10) (Estimates): Upper Triangle var[IK( / Xk)]; Lower
Triangle E[In(Xk/ Xj)] (See Text for More Details)

k
i 1(Al203)  2(SiQ;)  3(Fe0s)  4(TiO2)  5(H0)  6(Res)
1(Al203) — 2.0387 0.1288 0.3048 0.0886 1.6540
1.1581 0.1288 0.2098 0.0897  0.8494
2(Si;p) 3.7858 — 2.0536 2.1201  2.0006 2.3042
3.3017 1.1729 1.2271  1.1146 1.2427
3(Fe0s) 0.8465 —2.9394 — 0.3101 0.1519 1.6545
0.8470  —2.4547 0.2198 0.1525  0.8530
4(TiOy) 3.0093 —-0.7765 2.1628 — 0.3320 1.7082
3.0095 —-0.2922 2.1625 0.2461  0.8934
5(H20) 15142 -2.2717 0.6677 —1.4952 — 1.6195
15157 -1.7860 0.6687 —1.4938 0.8006
6(Res) 4.0718 0.2859 3.2253 1.0625 2.5576 —
3.6807 0.3790 2.8337 0.6712  2.1650

Sensitivity of Outliers

Another important question to analyze when we replace zeros of a data set is
the sensitivity of outliers. For our purposes, a composixijoa X is considered as

Table 4. Variation Array of Data Sets Resulting From Multiplicative Replacement
With § = 0.001 ands = 0.01 (Rm,1—Rm,10) (Estimates): Upper Triangle var[IX( / Xk)];

Lower Triangle E[InKk/ Xj)] (See Text for More Details)

k
i 1(Al203)  2(SiQ;)  3(Fe0s)  4(TiOz)  5(H0)  6(Res)
1(Al>03) — 15626  0.1288 0.2492 0.0885 1.2205
0.7500 0.1288 0.1773 0.0885 0.5167
2(Siky) 3.5280 — 1.5779 1.6414  1.5230 1.7068
3.0400 0.7651 0.8264 0.7065  0.7757
3(Fe0s3) 0.8464 —-2.6815 — 0.2566 0.1519 1.2228
0.8464  —2.1935 0.1898 0.1519 0.5271
4(TiOy) 3.0047  —-0.5233 2.1583 — 0.2816 1.2732
2.9977  —0.0422 2.1513 0.2198  0.5741
5(H20) 15140 —-2.0140 0.6676  —1.4907 — 1.1812
15140 -1.5259 0.6676  —1.4837 0.4565
6(Res) 3.8638 0.3358 3.0174 0.8591  2.3498 —_
3.4663 0.4263 2.6199 0.4686  1.9523
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Table 5. Sensitivity of Atypicality Index (%) of Outliers in Halimba Data Sétfor § = 0.001,
0.0025, 0.005, 0.0075, 0.01. “T” Symbolizes That the Atypicality Index is Not Greater Than 0.999
(Additive Replacement/Multiplicative Replacement)

8

Obs. Aty. ind. 0.001 0.0025 0.005 0.0075 0.01
55 99.91 TIT TIT TIT TIT TIT
223 99.92 TIT TIT TIT TIT T/99.95
42 99.94 TIT TIT T/99.93 T/99.94 T/99.96
62 99.95 TIT T/99.90 T/99.94 99.90/99.96  99.92/99.97
10 100 TIT T/99.96 99.91/99.9  99.95/99.99 99.96/100
50 100 99.99/99.99  99.99/100 100/100 100/100 100/100
12 100 TIT T/99.92 T/99.99 T/100 99.94/100
9 100 100/100 100/100 100/100 100/100 100/100
15 100 TIT T/99.97 T/100 99.94/100 99.98/100
14 100 T/99.96 99.91/100  99.99/100 100/100 100/100
13 100 100/100 100/100 100/100 100/100 100/100

an outlier if its atypicality index is greater than 0.999 (99.9%) (Aitchison, 1986).
Table 5 shows the atypicality index (in percent) of outlierXafnd their variation
when we consider the data $&fx or Rm k. As suggested by (Aitchison, 1986), for
this analysis we have considered only the vabues0.001, 0.0025 0.005 0.0075

0.01. Compositions of Table 5 are identified by their row number in data m#trix
The letter “T” symbolizes that the atypicality index of a composition is not greater
than 0999. Note that no big differences are detected between the behavior of both
replacement rules with respect to outliers.

Two More Data Sets

Because our aimis to convince the reader of the usefulness of above results, we
have studied two more data sets. The second data set has been cited in Aitchison
(1986) and was first used for comparison purposes by Bacon-Shone (1992). It
consists of 30 samples of foraminiferal composition at 30 different depths. The
composition contains four parts, and three compositions have a zero in part three,
while two different compositions have a zero in part four. Note that this data set
is a set with few compositions and a small number of zeros. The suggested range
for sensitivity analysis (Aitchison, 1986) isdD1 < § < 0.01. We have analyzed
the behavior of the two replacement rules and we have obtained similar results
to those obtained with the Halimba bauxite deposit data. As a summary, Figure 6
shows the sensitivity of measures of central tendency and total variability (7) in
relation to the valué used in the replacement rule. Observe that we obtain the
same pattern as in the first case (Fig. 5).
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The third example is a data set with many compositions and many zero values.
It corresponds to granulometric data from the Darss Sill area in the Baltic Sea. This
set has been analyzed by many authors for different purposes (Bohling and others,
1996; Davis and others, 1995; MenrtFerrendez, Barce-Vidal, and Pawlowsky-
Glahn, 1997; Tauber, 1999; Zhou, 1997) It has a total number of 1281 grain size
samples. Out of 1281 samples, 1163 have at least one zero. Moreover, out of the
1281 x 8 values in the data matrix, 2852 are zero. Following Aitchison (1986),
in this case an appropriate range for sensitivity analysisG8dl < § < 0.001.
Figure 7 shows the sensitivity of measures of central tendency and total vari-
ability (7) in the case of the Darss Sill data set. Note that for both measures
the same pattern of variation is obtained. We want to remark that these repeated
pattern suggests a strong relation between both replacement rules. This relation
can be explained noting that in the additive replacement (3} thaue is sub-
jected to a multiplicative modification by a factoZ ¢ 1)(D — Z)/D?. There-
fore, when we analyze the sensitivity in an appropriate range, we can conclude
that the multiplicative replacement (6) has a better behavior than the additive
replacement (3).

MULTIPLICATIVE REPLACEMENT OF MISSING VALUES
FOR COMPOSITIONAL DATA

According to Aitchison (1997), different types of irregularities can be consid-
ered. To illustrate them, consider Table 6. It contains three compositions suffering
from different irregularities. Composition 1 has one zero, which can be assumed
to be a rounded zero. In that case we apply a multiplicative replacement (6) for a
suitables. Composition 2 and composition 3 have missing values, but there is a
difference between them: the sum of the nonmissing values. In fact, composition 2
suggests that the preliminary determination fails, for whatever reason, to record
the quantity of the missing part. Then, what is reported is the composition of the
nonmissing subcomposition. A different situation can be observed for composi-
tion 3. Because the sum of the nonmissing values in composition 3 is less than
one, we can assume that two values (percentages) are lost. Observe that for com-
position 2 modification of nonmissing values is mandatory, while for composition
3 itis voluntary.

Table 6. Three 5-Part Compositions Suffering From Irregularities

X1 X2 X3 X4 X5
Obs. 1 0.0000  0.1250 0.1237 0.7253 0.0260
Obs. 2 0.1304 0.3151 missing 0.2002 0.3543

Obs. 3 0.1963 missing missing 0.0819 0.0114
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In general, lek € SP and assume it hag missing values. If our interest is
to impute a value, we propose to replacaith a compositiorr € SP without
missing values using the expression

mj, if X; is missing,
I’J = (C_Zk\xk m\ssingmk)

K|xg nonmlssmgxk

Xj, If Xj is nonmissing , (10)

wherem; is the imputed value on the missing pajtandc is the constant of the
sum-constraint (1). Obviously, we can use several methods (Allison, 2001; Little
and Rubin, 1987; Shafer, 1997) to choose the vatyeThe easiest option is to
choose a constant value. The geometric mean of nonmissing values X;gart
another simple option to be considered. Of course, any imputation method has its
advantages and disadvantages. But here we are not discussing the best value for
m;. What we are advocating here is that the multiplicative strategy is suitable to
perform any kind of imputation.

Note that, in replacement (10), the modification of nonzero values is multi-
plicative. For the case of composition 2 it holds thaf . nonmissing = €. Thus,
in this case, replacement (10) is identical to replacement (6). Going on to the
case illustrated by composition 3, if the imputated valugsverify the equality
2 kixe missingMk = € = > iy, nonmissingk: then the nonmissing values of composi-
tion 3 are not modlfled Otherwise, i.€ Jfy . missingMk > € = 2 _iix, nonmissingk-
these values change by a reducing factor. In any case, as in the zero replacement
strategy (6), the multiplicative character of replacement (10) induces reasonable
properties: it is “natural,” it is coherent with the basic operations in the simplex,
and it preserves the ratios between nonmissing parts. These properties are not de-
veloped here further, because they are analogous to the properties P1, P2, and P3
of replacement (6).

CONCLUSIONS

In this paper, it is shown that the theoretical drawbacks of the additive zero
replacement method proposed in Aitchison (1986) can be overcome using a mul-
tiplicative approach on the nonzero parts of a composition. The new approach
has reasonable properties from a compositional point of view. In particular, it is
“natural” in the sense that it recovers the “true” composition if replacement values
are identical to the missing values, and itis coherent with the basic operations on the
simplex. This coherence implies that the covariance structure of subcompositions
with no zeros is preserved. As a generalization of the multiplicative replacement,
a substitution method for missing values on compositional data sets results which
has analogous reasonable properties.



Dealing With Zeros and Missing Values in Compositional Data Sets 277

ACKNOWLEDGMENTS

The authors thank the reviewers for useful comments which helped improve
the paper. This research has been partially financed by the QireGaheral de
Enseaianza Superior e Investigaci Cientfica (DGESIC) of the Spanish Ministry
for Education and Culture through the project BFM2000-0540.

REFERENCES

Aitchison, J., 1986, The statistical analysis of compositional data: Chapman and Hall, London, 416 p.

Aitchison, J., 1997, The one-hour course in compositional data analysis or compositional data analysis is
simple,in Pawlowsky-Glahn, V., ed., Proceedings of IAMG’97, The Third Annual Conference of
the International Association for Mathematical Geology, Vol. 1: International Center for Numerical
Methods in Engineering (CIMNE); Barcelona, Spain, p. 3—-35.

Aitchison, J., 2002, Simplicial inference Viana, M. A. G., and Richards, D. S. P., eds., Contem-
porary mathematics series, Vol. 287: Algebraic methods in statistics and probability, American
Mathematical Society, Providence, RI, p. 1-22.

Aitchison, J., Barcel-Vidal, C., Marth-Ferrdndez, J. A., and Pawlowsky-Glahn, V., 2000, Logratio
analysis and compositional distance: Math. Geol., v. 32, no. 3, p. 271-275.

Aitchison, J., and Greenacre, M., 2002, Biplots of compositional data: Appl. Stat., v. 51, no. 4, p. 375—
392.

Allison, P. D., 2001, Missing data: Sage University Papers Series on Quantitative Applications in the
Social Sciences, 07-136, Thousand Oaks, CA, 93 p.

Bacon-Shone, J., 1992, Ranking methods for compositional data: Appl. Stat., v. 41, no. 3, p. 533—
537.

Barceb-Vidal, C., Marth-Ferréndez, J. A., and Pawlowsky-Glahn, V., 2001, Mathematical foundations
of compositional data analysi®;) Ross, G., ed., Proceedings of IAMG’01, The sixth annual
conference of the International Association for Mathematical Geology: Cancun, Mexico, 20 p.
(CD, electronic publication).

Billheimer, D., Guttorp, P., and Fagan, W., 2001, Statistical interpretation of species composition: J.
Am. Stat. Assoc., v. 96, p. 1205-1214.

Bohling, G. C., Davis, J. C., Olea, R. A,, and Harff, J., 1996, Singularity and nonnormality in the
classification of compositional data: Math. Geol., v. 30, no. 1, p. 5-20.

Cox, T. F., and Cox, M. A., 1994, Multidimensional Scaling: Monographs on statistics and applied
probability: Chapman and Hall, London, 213 p.

Davis, J. C., Harff, J., Olea, R., and Bohling, G. C., 1995, Regionalized classification of the Darss Sill
sedimentsijn Pawlowsky-Glahn, V., ed., Proceedings of IAMG’97, The Third Annual Confer-
ence of the International Association for Mathematical Geology, Vol. 1: International Center for
Numerical Methods in Engineering (CIMNE), Barcelona, p. 145-150.

Fry, J. M., Fry, T. R. L., and McLaren, K. R., 1996, Compositional data analysis and zeros in micro
data: Centre of Policy Studies (COPS), General Paper no. G-120, Monash University, Clayton,
Australia.

Krzanowski, W. J., 1988, Principles of multivariate analysis: A user’s perspective: Clarendon Press,
Oxford, 563 p. (reprinted 1996).

Little, R. J. A., and Rubin, D. B., 1987, Statistical analysis with missing data: Wiley, New York, 278 p.

Martin-Ferréindez, J. A., BarcetVidal, C., and Pawlowsky-Glahn, V., 1997, Different classifications
of the Darss Sill data set based on mixture models for compositionalid&aylowsky-Glahn,

V., ed., Proceedings of IAMG’97, The Third Annual Conference of the International Association



278 Martin-Fernandez, Barceb-Vidal, and Pawlowsky-Glahn

for Mathematical Geology, Vol. 1: International Center for Numerical Methods in Engineering
(CIMNE), Barcelona, p. 151-158.

Martin-Ferréndez, J. A., BarcetVidal, C., and Pawlowsky-Glahn, V., 1998a, Measures of difference
for compositional data and hierarchical clustering methad<€Buccianti, A., Nardi, G., and
Potenza, R., eds., Proceedings of IAMG'98, The Fourth Annual Conference of the International
Association for Mathematical Geology, Vol. 2: De Frede Editore, Napoli, p. 526-531.

Martin-Ferrdndez, J. A., BarcetVidal, C., and Pawlowsky-Glahn, V., 1998b, A critical approach to
nonparametric classification of compositional dai&izzi, A., Vichi, M., and Bock, H. H., eds.,
Advances in data science and classification, Proceedings of the 6th Conference of the International
Federation of Classification Societies (IFCS-98), Univarisé Sapienza, Roma: Springer-Verlag,
Berlin, p. 49-56.

Martin-Ferréndez, J. A., BarcelVidal, C., and Pawlowsky-Glahn, V., 2000, Zero replacement in
compositional data set®) Kiers, H., Rasson, J., Groenen, P., and Shader, M., eds., Studies in
classification, data analysis, and knowledge organization, Proceedings of the 7th Conference ofthe
International Federation of Classification Societies (IFCS’2000), University of Namur, Namur:
Springer-Verlag, Berlin, p. 155-160.

Martin-Ferreindez, J. A., Olea-Meneses, R., and Pawlowsky-Glahn, V., 2001, Criteria to compare
estimation methods of regionalized compositions: Math. Geol., v. 33, no. 8, p. 889-909.

Mateu-Figueras, G., BaraeNidal, C., and Pawlowsky-Glahn, V., 1998, Modeling compositional data
with multivariate skew-normal distribution8) Buccianti, A., Nardi, G., and Potenza, R., eds.,
Proceedings of IAMG’98, The Fourth Annual Conference of the International Association for
Mathematical Geology, Vol. 1: De Frede Editore, Napoli, p. 532-537.

Pawlowsky-Glahn, V., and Egozcue, J. J., 2001, Geometric approach to statistical analysis on the
simplex: SERRA, v. 15, no. 5, p. 384-398.

Pawlowsky-Glahn, V., and Egozcue, J. J., 2002, BLU estimators and compositional data: Math. Geol.,
V. 34, no. 3, p. 259-274.

Sandford, R. F., Pierson, C. T., and Crovelli, R. A., 1993, An objective replacement method for censored
geochemical data: Math. Geol., v. 25, no. 1, p. 59-80.

Shafer, J. L., 1997, Analysis of incomplete multivariate data: Chapman and Hall, London, 430 p.

Tauber, F., 1999, Spurious clusters in granulometric data caused by logratio transformation: Math.
Geol., v. 31, no. 5, p. 491-504.

Zhou, D., 1997, Logratio statistical classification and estimation of hydrodynamic parameters from
Darss Sill grain-size dat& Pawlowsky-Glahn, V., ed., Proceedings of IAMG’97, The Third An-
nual Conference of the International Association for Mathematical Geology, Vol. 1: International
Center for Numerical Methods in Engineering (CIMNE), Barcelona, p. 139-144.



