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Summary. The definition of composition like a vector whose components are subject to the
restriction of constant sum is revised from a mathematical point of view. Starting from the de-
finition of an equivalence’s relation on the positive orthant of the multidimensional real space
R?*!, the compositions become equivalence classes of elements of R?*!, and the set of
them —i.e., the corresponding quotient set— the compositional space € ¢. In this way, the
simplex becomes one, among many, of the possible representations of this quotient space.
The logarithmic transformation defines a one-to-one transformation between C ¢ and a suitable
vector quotient space £¢ defined on the multidimensional real space. This transformation
allows to transfer the Euclidean structure easily defined on £ ¢ to the compositional space. It
is showed that, from a mathematical point of view, the methodology introduced by Aitchison is
fully compatible with the nature of compositional data, and is independent of the representation
used to manage the compositional data.
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1. Introduction

Traditionally, compositional data have been identified with closed data, and the simplex
has been considered as the natural sample space of this kind of data.

We think that the emphasis on the constrained nature of compositional data has con-
tributed to mask its real nature. In our opinion, this is the principal reason for most
controversies (Watson and Philip, 1989; Aitchison, 1989, 1990a; Watson, 1990; Aitchison,
1991; Watson, 1991; Tangri and Wright, 1993; Baxter, 1993; Whitten, 1995; Bohling et al.,
1996; Woronow, 1997a,b; Zier and Rehder, 1998; Barcel6-Vidal et al., 1999; Tauber, 1999;
Aitchison et al., 2001) generated by the methodology introduced by Aitchison (1986) in his
monograph and pursued further in Aitchison (1990b, 1992, 1997, 1999, 2001), Aitchison and
Thomas (1998), Aitchison and Bacon-Shone (1999), Aitchison and Greenacre (2001), Bar-
cel6-Vidal (1996), Barcel6-Vidal and Pawlowsky-Glahn (1994), Barcelé-Vidal et al. (1995,
1996), Martin-Ferndndez (2001), Martin-Fernandez et al. (1997, 1998a,b,c, 1999, 2000),
Mateu-Figueras et al. (1998), Pawlowsky-Glahn and Barcel6-Vidal (1999), Pawlowsky-
Glahn and Egozcue (2001a,b).

More crucial than the constraining property of compositional data is the scale-invariant
property of this kind of data. Indeed, when we are considering only some parts of a full
composition, our data are still compositional, although the constraint condition is not ac-
complished. This fact was acknowledged in Aitchison (1992, 1997) introducing his argument
that any sensible statistical analysis on compositional data had to be based on logratios.
From a mathematical point of view, we believe that it is necessary to give a wider definition
of the concept of composition. This is done in Section 2 where the compositional equivalence
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relation in the positive orthant of the multidimensional real space R” is introduced. In this
manner, the space of all compositions —the compositional space C?, where d = D —1— is a
quotient space, and the d-dimensional simplex S is only one way, among many, to represent
C?. In this manner, it is even more evident that any analysis performed on compositional
data should and can be independent of their representation.

From this wider definition of composition and with the help of the logarithmic and the
exponential transformations, we develop in Sections 3 to 6 the successive steps to define an
Euclidean structure on the compositional space C¢. First, an Euclidean structure is defined
on a suitable real quotient vector space £4 of R?, and then this structure is translated to
C? by means of the exponential transformation. All of these results are more extensively
developed in Barcelé-Vidal (Barcel6-Vidal).

2. The space of compositions

2.1. First definitions

Any D x 1 real vector w = (wy,...,wp)’ with positive components or parts will be called a
D-observational vector. The set of all these vectors is the D-dimensional positive real space
]Rf , the positive orthant of R”.

DEFINITION 1. Two D-observational vectors w and w* are compositionally equivalent,
written w ~ w*, if there exists a positive constant k such that w = kw*. This equivalence
relation on ]Rf partitions the space in equivalence classes, called D- part compositions or,
briefly, compositions.

The composition generated by an observational vector w —i.e., the equivalence class of w—
is symbolized by w:

w={kw:kecR"}.

The set of all D-part compositions —i.e., the quotient space ]Rf /~— is called the compo-
sitional space, and is symbolized by C¢, where d = D — 1

The quotient mapping from ]Rf to C? which assigns the class w to each D-observational
vector w will be denoted by ccl (from compositional class):

ccllw =w (w e RY).
O

In Section 4, we justify why the set of all D-part compositions is symbolized by C? and
not by CP. A D-part composition can be geometrically interpreted as a ray from the origin
in the positive orthant of R” (see Fig. 1a).

The equivalence relation given in Definition 1 can be reformulated from the ratios of the
components of observational vectors.

PROPERTY 1. Two D-observational vectors w = (w1, ..., wp)" and w* = (w5, ..., w))’
are compositionally equivalent if and only if

.
Wi w; ..

— = — foreachi,j=1,...,D.
’LUJ' ’LUj
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2.2. Selection criteria

Any composition w is determined by any observational vector belonging to the equivalence
class w. Thus, different criteria can be used to select a specific observational vector to
represent a composition, leading to interesting results.

We symbolize by ccly the operator which transforms each D-observational vector w into
the unit-sum vector w/ Zle w;. This operator corresponds to the constraining operator
C introduced in Aitchison (1986, p. 31). It is clear that w ~ ccl, w, and that the operator
ccly is constant on the vectors belonging to the same compositional equivalence class, i.e.,
if w~ w*, then ccly w = ccl, w*.

DEFINITION 2. The operation which selects from each composition w the composition-
ally equivalent unit-sum observational vector ccly w is called linear criterion. O

Geometrically, ccly, w is the intersection of the ray going from the origin through w and
the hyperplan of RY defined by the equation w; + ... +wp =1 (see Fig. la). The set of
all these points is the well-known d-dimensional regular simplex:

Sd:{(’wl,...,wp)’:w1>0,...,wD>O;w1+,_,_|_wD:1}'

The simplex S? corresponds to ternary diagram, an equilateral triangle of unit altitude.
For any point P in triangle 123 (see Fig. 1b) the perpendiculars w;,ws and ws from P
to the sides opposite 23, 13 and 12, respectively, satisfy w; + wy + ws = 1. Similarly, the
simplex 83 corresponds to a regular tetrahedron 1234 of unit altitude.

w3

w1

(a) (b)

Fig. 1. (a) The 3-part compositions are interpreted as rays from the origin of R2.. Linear selection
criterion; (b) The simplex S2.

We symbolise by cclg the operator which transforms each D-observational vector w
into the unit-length vector w/||w||. It is clear that w ~ cclg w, and that the operator cclg
is constant on the vectors belonging to the same compositional equivalence class.

DEFINITION 3. The operation which selects from each composition w the observational
unit-length vector cclg w is called spherical criterion. a
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Geometrically, cclg w is the intersection of the ray going from the origin through w and
the unit sphere of R” centered in the origin (see Fig. 2a).
We symbolise by ccly the operator which transforms each D-observational vector w
into the unit-product vector w/g(w), where g(w) = (HD w;)/P is the geometric mean
Y ,]:1 ] g
of the components of vector w. It is clear that w ~ cclgy w, and that the operator ccly is

constant on the vectors belonging to the same compositional equivalence class.

DEFINITION 4. The operation which selects from each composition w the unit-product
observational vector cclg w is called hyperbolic criterion . O

Geometrically, ccly w is the intersection of the ray given from the origin through w and
the hyperbolic surface Hipp in ]Rf defined by the generic equation [];Z; w; = 1 (see Fig.
2b).

w2

w3

B3

I W
cd )

1 w1

(b)

Fig. 2. (a) Spherical selection criterion (case D=3); (b) Hyperbolic selection criterion (case D=2).

Figure 3 shows the three criteria of selection for D = 2 in the same graph.

2.3. Compositional nature of data

When the components of the observational vectors of our data set represent ratios of a fixed
total —i.e, when they represent relative magnitudes—, the data is clearly compositional
because the components provide to us only relative information and not absolute informa-
tion. In this case, only ratios between components are meaningful, and those ratios are
independent from the arbitrary total.

Sometimes, the components of the observational vectors are themselves meaningful,
i.e., they represent absolute magnitudes. But, in spite of that, we can decide to take only
account the information given by the ratios between the components. If so, we are implicitly
assuming that the vectors w and kw, with k£ > 0, are providing to us the same information.
Therefore, in this case, we are also handling our data as compositional data.

In any case, if our data set is a compositional data set, our analysis have to be inde-
pendent of the observational vectors used to represent the compositions. This is equivalent
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1 w1

Fig. 3. The three selection criteria (case D = 2).

to say that any meaningful analysis can be expressed in terms of ratios of components
of the observationals vectors. Or, in a more mathematical form, it is equivalent to work
with the equivalence classes of the compositional space C?. Therefore, althoug the repre-
sentation of the compositional space on the simplex might be considered the best and the
simplest representation, we have to be able to perform our analysis independently of the
representation.

2.4. Subcompositions
Sometimes, we focus our attention on the relative magnitudes of a subset of parts of a
composition.

DEFINITION 5. Given a composition w € C?, any composition obtained from the selec-
tion of two or more parts of the D-observational vector w is termed a subcomposition of
wW. O

Let be C' the number of selected parts, with 2 < C' < D. We symbolize by S the ordered
subset of indices of the selected parts of w to be included in the subcomposition. We write
wg to indicate the observational subvector formed from the corresponding parts of w, and

therefore ws represents the final subcomposition, which belongs to the compositional space
C¢, where c = C — 1.

DEFINITION 6. Given an ordered set S composed by C different indices from {1, ..., D},
the formation of a subcomposition can be considered as the transformation subg from C¢
to C¢ given by



6 C. Barcel6-Vidal et al.

subg: C* — (C°

It is obvious that subgw is independent of the observational vector selected to represent
the composition w.

Geometrically, the formation of a subcomposition wg from a D-part composition w
corresponds to the orthogonal projection of the ray associated to w in ]Rf onto a subspace
of dimension C. This subspace is generated by the coordinate axes associated to the parts
selected to form the subcomposition (see Fig. 4).

w3

(B3

w

(a)

Fig. 4. Geometrical interpretation of the formation of the subcomposition w 1> from a composition
w €C% (a) InR3; (b) InS>.

Obviously, the subcompositional mapping subg from C? to C¢ is not injective. In spite of
that, it would be interesting to define an application from C¢ into C? which univocally sends
each composition of C¢ to a composition of C?. In order to not complicate unnecessarily the
notation, we will assume that S ={D —C +1,...,D}.

DEFINITION 7. We define the mapping incg from C¢ to C? as

!
incsw = ccl <1, f’..ﬂl,g?’%,...,%) (w € C°). 2)

It is clear that incsw is independent of the observational vector selected to represent
the composition w.

PROPERTY 2. The mapping incg from C¢ to C? is injective. Moreover, the composed
mapping subg oincg is the identity mapping on C°. a
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3. Thelogarithmic transformation on the compositional space

3.1. A quotient space in R”
The logarithmic transformation from ]Rf to RP suggests to define in R” an equivalence
relation in correspondence with the compositional equivalence relation defined in ]Rf .

Certainly, if w ~ w*, then logw — logw* of R” is a multiple of the vector of unities
1p=(1,...,1) e R".

DEFINITION 8. Two vectors z and z* in R” are equivalent, written z = z*, iff there
exists a constant A such that z* = z + A1p. If we consider the one-dimensional subspace
U={\p:AeR}of IR, the previous equivalence relation can be also defined as

*

Z=7z — z-z"e¢Ul.

O

Therefore, it is natural to symbolize by z + U the equivalence class or coset generated by
the vector z in RP. The set of all these cosets —i.e., the quotient space R” J/U— will be
symbolized by £?, where d = D — 1.

The quotient mapping from RY to £ which assigns the class z + U to each vector
z € RP will be denoted by ucl:

uclz=z+U (z € RP).

From Figure 5 it is clear that the cosets z + U can be geometrically interpreted by
straight lines parallel to 1p. It seems “natural” to represent a equivalence class z + U
by the point of intersection of the straight line associated to this coset and the hyperplan
V ={z € R” :2'1p = 0} of R” by the origin, orthogonal to 1. This point of intersection
can also be interpreted as the common orthogonal projection onto V of all the vectors
belonging to the equivalence class z + U.

We symbolize by ucly the operator which transforms each vector z of R” into its
orthogonal projection onto the hyperplan V. It is clear that z = ucly z, and that the
operator ucly is constant on the vectors belonging to the same coset. It is easy to prove
that

D
Ej:l Zj

D ]-D = HDZ7

uclyz =z —

where Hp is the well-known centering matrix of order D x D (see Mardia et al., 1979). We
recall that this matrix is equal to Ip — D~'Jp, where Ip is the identity matrix of order
D x D, and JD = ]'D]"D'

3.2. The logarithmic transformation between the quotient spaces
The logarithmic and exponential transformations from ]Rf to RY are compatible with the

equivalence relations ~ and = defined in ]Rf and RP, respectively. That is to say,

w~w*in]R£ = logw = logw* in R”,
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z2

z+U

Z1

Fig. 5. Geometric interpretation of equivalence classes in £! = R*/U

z=z"in R’ = expz~expz®in ]Rf.

Therefore, these transformations can be extended to the quotient spaces C* and £¢. We
will symbolize by logc the transformation from C¢ to £¢%:

logcw =logw + U (w € C?),
and by expc the inverse transformation from £¢ to C¢:
expc(z + U) = ccl (expz) (z+U € L.
The point vector in V' of the coset logcw will be given by
ucly (logw) = Hp logw = log v
g(w)

DEFINITION 9. The centered logratio transformation —denoted by clr — is the one-to-
one function from the compositional space C? to the subspace V of R?, defined by

g(w)

The inverse transformation, from V to C¢, is given by

clrw = log (w € C%).

1

clr " z=ccl(expz) (z€V).

O

It is interesting to note that the logarithmic and the exponential transformations establish a
one-to-one correspondence between the hyperbolic surface Hipp in ]Rf and the hyperplan
Vin RP.
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4. The compositional space as areal vector space

As U is a vector subspace of dimension one of the D-dimensional space R”, the quotient
space L% = ]RD/U can be structured as a real vector space of dimension d = D — 1. To do
so, we define the sum of two cosets z + U and z* + U as

(2+U)+ (2" +U) = (z+7°) + U,
and the product of a coset z + U by a constant A € R by

AMz+U)=xz+U.

The coset 1p + U is the neutral element and the opposite of z + U is the coset (—z) + U.
The one-to-one correspondence between C% and £% allows to define in C% a real vector
space isomorphic to £%,

DEFINITION 10. In correspondence with the sum in £%, the inner operation ® in C¢ is
defined as

w @ w" = expc (logew + logew™) = cel (wywy, ..., wpwp)’ (w,w* € C%.

Equally, in correspondence with the product by a constant in £¢, the external operation ®
in C? is defined as

AOw =expc (Alogew) = ccl (wy,...,w)) (weclC’) (AeR).

O

Therefore, (C? ®,®) becomes a real vector space, isomorphic to the quotient space
L. In the conmutative group (C%,®), the composition 1p = ccl(1,...,1)" is the neutral
element, and the inverse composition w ! of w = ccl(wy,...,wp)" is the composition
w ! =cc(l/wy,...,1/wp)".

Provided that (C?,®, ®) is a real vector space, it can be viewed as an affine space when
the group (C?, ®) operates on C? as a group of transformations.

DEFINITION 11. Given a composition p € C%, the perturbation associated to p is the
transformation from C? to C¢ defined by

c—op®c (c €Y.

Then, we say that p® c is the composition which results when the perturbation p is applied
to the composition c. O

Perturbations in the compositional space plays the same role as translations plays in the
real space. Like it, the set of all perturbations in C? is a commutative group isomorphic
to (C%,®). Thus, the composition of two perturbations p; and py is the perturbation
associated to p1 ® p2. Furthermore, the perturbation associated to 1p is the identity
perturbation which does not produce any change when applies to a composition. Also,
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given any perturbation p there exists the inverse perturbation p~! which undoes the changes
produced by p. Finally, given two compositions

w = ccl (wy,...,wp)" and w* = ccl (w},...,w}h)" € C,

there exists a unique perturbation p which transforms w on w*. This perturbation is no
other than

The assumption that the group of perturbations is the operating group on the compo-
sitional space is the keystone of the methodology introduced by Aitchison (1986). In fact,
it means accepting that the “difference” between two compositions w = ccl (wy,...,wp)’
and w* = ccl(wy,...,wp)" is based on the ratios w}/w; between parts instead of on the
differences w} — w.

5. The compositional space as an Euclidean space

5.1. £%as an Euclidean space

Given that the elements of £? can be interpreted as straight lines parallel to vector 1p,
it seems “natural” to define the distance between two cosets z + U and z* + U of £¢ as
the Euclidean distance between these two straight lines in IR”. This distance will be equal
to the length of the difference vector ucly z* — ucly z, where ucly z and ucly z* are the
intersection points of these straight lines with the orthogonal hyperplan V' (see Fig. 6).

L z*+U

<_~; - ucl Vz*

ucl V2 ?‘

Fig. 6. Distance between two cosets z + U and z* + U of £°.

Therefore, it is easy to translate to £¢ the Euclidean structure on V C R,

DEFINITION 12. Given z + U € £% and z* + U € £%, we define the £-inner product
<z+ U,z* + U >, as the usual inner product <ucly z,ucly z*> in R”. O
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It is easy to prove that

D D D
1
<Z+U,Z*+U>L:§ zj]’f—ﬁ E 2 E zJ* =z'Hpz*,
i=1 i=1

j=1

for each z + U,z* + U € L.
It is possible to define a norm and a distance in £? from the L-inner product. The
L-norm of a coset z + U € L4 is given by

07 1/2

D
lz+Ullz=(<z+Uz+U>c)/? = Zz - = sz = (z'Hpz)'/?,
j=1

and it holds that ||z + U||z = |juclyz||.
Similarly, the £-distance between two cosets z + U and z* + U in £? is given by

07 1/2
D D

de(a+ U,z + U) = @ +0) = (a4 Dlle = | 305 — ) = 5 | D025 =)

Jj=1 Jj=1

This expression can be written in matrix form as

de(z+ U,z +U) = [(z —2*)'Hp(z — z*)]'/”,
and it holds that dz(z + U,z* + U) = d(ucl vz, ucl yz*).
In this manner, the quotient space £¢ becomes an Euclidean space.

5.2. €% as an Euclidean space
The one-to-one transformations loge and expc between C? and £¢ allow to transfer to C¢
the real Euclidean structure defined on £%.

DEFINITION 13. We define the compositional inner product of two compositions w and

*

W~ as

<w,w'>c=<logw + U,logw* + U > .

It is easy to prove that

D

1
<w,w" >C—Zlogw]logw - = Zlogwj Zlogw = (logw)Hp log w*,
j=1

and
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D *
wj wy
* — § :l J 1 J

=<clrw,clrw* >,

j=1

for each w, w* € C%.

Thus, the C-inner product of w and w* in C? is equal to the ordinary inner product of
crw and clr w* in R”.

As usual, two compositions w, and w* are said to be C-orthogonal if and only if <
w, W_* >c= 0.

From this scalar product in C? we can define a norm and a distance in the compositional
space. The compositional norm of a composition w € C? will be given by

57 1/2
D

D
. 1
Islle = (<w.w>e)""” = |3 (logwy)* = 55 | 3 logw; | | = [(logw)'Hplogw]'"*.

j=1 j=1

The C-norm of a composition of C? is equal to the Euclidean norm in R” of the clr-
transformed vector:

Iwlle = llclrw|  (w €Y.

Another expression of the C-norm of a composition is given by

1 Wi 2
=g 5 (los2)  ech

1<i<j<D J

A composition w is said to be C-unitary if and only if ||w||¢c = 1.
The compositional distance between two compositions w and w* of C? is given by the
C-norm of the composition w* ® w™! = ccl (w} /w1, ..., w} /wp), i-e.,

217 1/2
*

D w2 1 [P w*

d ) = log —L — log —~

c(w,w”) Z(Og wj) D Z %8,
j=1 j=1

This distance can be expressed in matrix form by

de(w,w*) = [(logw* — logw) Hp(logw" — logw)]l/2 .
Therefore, the C-distance between two compositions in C? is equal to the Euclidean
distance in R? between the corresponding clr-transformed vectors:

de(w,w") = d(clrw,clrw®)  (w,w" € C%).

Thus, the C-distance just defined converts the compositional space C? in an Euclidean
space which is isometric to the Euclidean space £%.

Moreover, the centered logratio transformation clr is the natural isometry between C¢
and the subspace V of RP.
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This distance in C? will accomplish the usual properties of all Euclidean distances.
In particular, it is related to the operations in the compositional space by the following
identities:

de(a,b) =de(a®c,b®c) (a,b,ce ),
and
de(A®a,A®b) = |\de(a,b) (a,beC? (AeR).

Another important property of this compositional distance holds in relation to subcom-
positions. It is based on the fact that the mapping subg introduced in Definition 6, which
sends a composition w € C¢ to a subcomposition ws € C¢, is a linear application between
the real vector spaces (C?,®,®) and (C¢,®,®).

ProPERTY 3. The compositional distance is subcompositionally dominant:

de(w,w*) > de(ws, ws) (w,w” €C?).
Or, equivalently,

Iwlle > llwslle (wecC?).

O

This property means that the C-distance between two subcompositions can never be
greater than the C-distance between the corresponding compositions. This is a reasonable
property to be expected from any distance defined over the compositional space.

PROPERTY 4. The mapping incg introduced in Definition 7 is a linear application be-
tween the real vector spaces (C°,®,®) and (C?,®,®). This mapping preserves the C-
distance because

(w € C9.

!
_ w w
llecl (w1, ..., we)'||e = ||ccl <1, ]?..C,l,—l,...,—c>

g(w) g(w)

c

6. Bases in the compositional space

6.1. Natural bases in £¢

Let e; = (1,0,...,0),e2 = (0,1,0,...,0),...,ep = (0,...,0,1)" be the canonical basis of
RP”. Let B be the ordered set {e; +U,...,ep+U} of cosets of £4. For each j =1,...,D,
we symbolize by B the ordered set B~ — {e; + U}. Clearly, the set B, is a basis of the
vector space L£Z, for each j = 1,..., D. In particular, if z = (21,...,2p)" € RY, the vector
y whose components are those of z 4+ U in the basis BED is

y = (21— 2p,...,24 — zp)' = Faz,
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where F is the d x D matrix [I; : —14]. For this basis it hold that

D-1 .
lei + Ul = 5= (i=1,....D),

and

1
<ei+U,ej+U>[;:—5 (i,j=1,...,D; i #j).

Thus, none of the basis ij of £ is L-orthonormal. The d x d matrix which expresses
the L-metric in the basis ij of £% is equal to M = I; — D~1J,, independently of the
index j = 1,...,D. This matrix can be expressed as a function of F because the following
relationship holds:

M = (FF') L. (3)

6.2. Orthonormal bases in £¢

The subspace V = {z € R : 2'1p = 0} of RP has dimension d = D — 1. Let v; =
(vi1,---,v1p),.-.,vqg = (v41,.--,vgp)" be an orthonormal basis of V', and let V be the
D x d matrix [vy : ... : vg]. It is straightforward to prove that this matrix verifies the
following two identities:

() V'V=I; and (i) VV'=Hp. (4)

Inversely, if V is a D x d matrix verifying the two identities (4), their vector-columns
constitute an orthonormal basis of the subspace V.

Then, the ordered set VX = {v; + U,...,vq+ U} is an L-orthonormal basis of £?. If
z € RP, the vector u of R? whose components are those of the class z + U in the basis V£
is

u=(FV) 'Fz.
6.3. Natural bases in C¢
From cosets e; + U, ...,ep + U of L%, we define the corresponding compositions in C%:

& =expc(e; +U) =ccl(e,1,...,1,1),...,ép = expc(ep + U) = ccl(1,1,...,1,¢e).

DEFINITION 14. If B symbolizes the ordered set {€1,...,€ép}, the set B_; = B — {&;}

is a basis of the real vector space (C? ®,®), for any index j = 1,...,D. These bases are
called natural basis of C¢. a
Then, if w = (wy,...,wp)" € ]Rf, the vector y of R whose components are those of
the composition w in the basis B_p is equal to
w1 Wy
y = (log—,...,log —)".
wp wp

In general, if w_; symbolizes the vector w without the component w;, the components
of w in the basis B_; are those of the vector log(w_;/wj).
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DEFINITION 15. The additive logratio transformation of index j (j = 1,...,D) —
denoted by alr; — is the one-to-one transformation from C¢ to R? which assigns to each
composition w its components in the basis B_;:

W_j
w — alr; w = log —.
wj

The inverse transformation of alr;, from R? to C%, is given by

alr;1 y =ccl(expyi,...,expyj_1,1,expyj,...,expys) (y € RY).

In particular, when j = D, these transformations can be easily expressed in matrix form
as

alrp w = Flogw, and alrp'y = ccl {exp [F'(FF') 'y]}.
6.4. Orthonormal bases in C?
As happens with the basis ij of £%, none of the bases B_; of C? is C-orthonormal. The

matrix M introduced in (3) is the matrix which determines the C-metric in these bases.
This matrix M corresponds to matrix H™! defined in Aitchison (1986, p. 343).

DEFINITION 16. From any D x d matrix V = [vy : ... : v4] that verifies the two
identities (4), we can define the compositions

vi =expc(vy +U),...,vqg =expc(vqg +U).

Then, the ordered set V = {¥,...,V4} is a C-orthonormal basis of C¢. a

Consequently, if w is an observational vector of ]Rf , the vector u of R? whose compo-
nents are those of the composition w in the basis V is equal to

u=(FV) 'Flogw.

DEFINITION 17. Given a D x d matrix V = [vy : ... : v4] that verifies conditions (4),
the isometric logratio transformation —denoted by ilry — associated to this matrix V,
is the one-to-one transformation from C% to IR? which assigns to each composition w its
components in the basis V just defined:

w —ilrtyw = (FV) " !'Flogw.
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The inverse transformation of ilry, from R? to C?, is given by
ilry! x = ccl (exp { [(FV)_lF]’x}) (x € RY).

Note that, by construction, the transformation ilry is an isometry between the metric
spaces C% and R?., thus justifying the term isometric logratio transformation. This term
was first used by J.J. Egozcue (personal communication).

PROPERTY 5. If V =[vi :...:vg] and V* =[v] :...:v}] are two D x d matrices that
verify conditions (4), then the isometric logratio transformations ilry and ilry« associated
to V and V*, respectively, are related by the following identity:

ilry w = V'V*ilry.w  (w € C%).

6.5. Determination of a composition
As consequence of the above results, a composition w € C? can be expressed in several
ways:

(i) Giving any D-observational vector belonging to w.

(ii) Giving the components (y1,...,yq) = y' of w in the basis B_p of C%. If it is necessary,
we can choose the components of any other logratio alr;w (j # D).

(iii) Giving the components (z1,...,2p)" = z of the centered logratio transformed vector
clr w. Since z belongs to subspace V of RP, its components are related by the equality
z1+...+2zp =0.

(iv) Or, finally, giving the components (u1,...,u4)" = u of w in an orthonormal basis V
of C%. In this case, it is also necessary to know the matrix V which individualizes the
basis V.

Obviously, option (i) is the best in order to determine a composition w because the com-
ponents wi,...,wp of vector w are directly interpretable. Usually, we will choose the
observational vector ccl; w belonging to simplex S? because, in this case, their components
express parts of a total. In option (ii), the components y; are also interpretable because
they represent logratios —y; = log(w;/wp) (j =1,...,d)—, and it is very easy to compute
from them any other logratios:

log— =y, —y; (,j=1,...,d), and log—2=—y; (j=1,...,d)
wj wj

It is difficult to give a direct interpretation of the centred logratio components z; =
log[w;/g(w)] (j = 1,...,D) because of the presence of the geometric mean g(w) in the
denominator of these logratios. The component z; gives, in logarithmic scale, information
about the value of part j with respect to overall value of the other parts. However it
results very easy to calculate from the centred logratio components any logratio because
log(wi/wj) =Z; —Zj (Z,] =1.. D)
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Finally, the components of the vector u in option (iv) are not directly interpretable
because they depend of an arbitrary matrix V satisfying conditions (4). However, this
representation is very useful when we need to analyze the metric relations between a set of
compositions because the relationship between components of a composition in the basis
V are Euclidean, if we consider in C? the metric structure associated to the C-distance
previously defined.

PROPERTY 6. Vectors u, y and z associated to the same composition w are related by
the following relationships:

(a) u=(FV)ly, and u=(FV) 'Fz.
(b) y=FVu, and y=Faz.
(c) z= [(FV)_lF]Iu, and z=F'(FF')"ly.

7. Conclusion

The methodology developed by Aitchison (1986) to perform the statistical analysis of com-
positional data is essentially based on the concept of perturbation and on the centered and
additive logratio transformations. We have shown that these concepts and transformations
are not arbitrary. In fact, from a mathematical point of view, they are induced by the
nature of the compositional data provided that these kind of data is characterized by their
scale-invariant property. Therefore, the methodology proposed by Aitchison (1986) cannot
be mathematically refused, as it is fully compatible with the nature of compositional data
and is independent of the representation used to manage the data. Moreover, the analysis
of subcompositions is also coherent with the analysis of the full composition.

The detractors of this methodology who advocate the “standard” analysis of this kind
of data are implicitly refusing the ratio as the natural form to compare two compositions or
two parts of the same composition. They are also implicitly accepting the usual difference
as the logical manner to perform these comparisons. This kind of analysis is completely
depending of the representation used to manage the data, and many of the results can be
misleading, as pointed out by Pearson (1897) more than one hundred years ago.

References

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman & Hall
Ltd., London (UK), 416 p.

Aitchison, J. (1989). Measures of location of compositional data sets. Mathematical Geolo-
gy 21(7), T87-790.

Aitchison, J. (1990a). Comment on “Measures of variability for geological data” by D. F.
Watson and G. M. Philip. Mathematical Geology 22(2), 223-226.

Aitchison, J. (1990b). Relative variation diagrams for describing patterns of compositional
variability. Mathematical Geology 22(4), 487-511.



18 C. Barcel6-Vidal et al.

Aitchison, J. (1991). Delusions of uniqueness and ineluctability. Mathematical Geolo-
gy 23(2), 275-277.

Aitchison, J. (1992). On criteria for measures of compositional difference. Mathematical
Geology 24(4), 365-379.

Aitchison, J. (1997). The one-hour course in compositional data analysis or compositional
data analysis is simple. In: Pawlowsky-Glahn, Vera, Ed., Proceedings of IAMG’97 —
The Third Annual Conference of the International Association for Mathematical Geolo-
gy. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (E),
3-35.

Aitchison, J. (1999). Logratios and natural laws in compositional data analysis. Mathema-
tical Geology 131(5), 563-580.

Aitchison, J. (2001). Simplicial inference. In: M. Viana, and D. Richards, Eds., Algebraic
Methods in Statistics. Contemporary Series of the American Mathematic Society, (in
press).

Aitchison, J. and J. Bacon-Shone (1999). Convex linear combination of compositions.
Biometrika 86(2), 351-364.

Aitchison, J., C. Barcel6-Vidal, and V. Pawlowsky-Glahn (2001). Some comments on com-
positional data analysis in Archaeometry, in particular the fallacies in Tangri and Wright’s
dismissal of logratio analysis. Archaeometry, (submitted).

Aitchison, J. and M. Greenacre (2001). Biplots compositional data. Applied Statistics,
(submitted).

Aitchison, J. and C. W. Thomas (1998). Differential perturbation processes: a tool for
the study of compositional processes. In: A. Buccianti, G. Nardi, and R. Potenza, Eds.,
Proceedings of IAMG’98, The Fourth Annual Conference of the International Association
for Mathematical Geology, De Frede, Naples (I), 499-504.

Barcel6-Vidal, C. (2000). Fundamentacién matemadtica del andlisis de datos composi-
cionales. Technical Report IMA 00-02-RR.

Barcel6-Vidal, C. (1996). Mixturas de datos composicionales. Ph. D., Universitat
Politécnica de Catalunya, Barcelona (E), 261 p.

Barcel6-Vidal, C., J. A. Martin-Ferndndez, and V. Pawlowsky-Glahn (1999). Comment on
“Singularity and nonnormality in the classification of compositional data”. Mathematical
Geology 31(5), 581-585.

Barcel6-Vidal, C. and V. Pawlowsky-Glahn (1994). Finite mixtures of compositional data.
Science de la Terre, Ser. Inf. 32, 29-48.

Barcel6-Vidal, C., V. Pawlowsky-Glahn, and E. Grunsky (1995). Classification problems of
samples of finite mixtures of compositions. Mathematical Geology 27(1), 129-148.

Barcel6-Vidal, C., V. Pawlowsky-Glahn, and E. Grunsky (1996). Some aspects of trans-
formations of compositional data and the identification of outliers. Mathematical Geolo-
gy 28(4), 501-518.



Mathematical Foundations of Compositional Data Analysis 19

Baxter, M. (1993). Comment on D. Tangri and R. V. S. Wright “Multivariate Analysis of
Compositional Data ...”. Archaeometry 35(1)(1993). Archaeometry 35(1), 112-115.

Bohling, G. C., J. C. Davis, R. A. Olea, and J. Harff (1996). Singularity and nonnormality
in the classification of compositional data. Mathematical Geology 30(1), 5-20.

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979). Multivariate Analysis. Academic Press,
London (GB), 518 p.

Martin-Fernandez, J. A. (2001). Medidas de diferencia y clasificacién no paramétrica de
datos composicionales. Ph. D., Universitat Politécnica de Catalunya, Barcelona (E), 233
p.

Martin-Ferndndez, J. A., C. Barcel6-Vidal, and V. Pawlowsky-Glahn (1997). Different clas-
sifications of the Darss Sill data set based on mixture models for compositional data.
In: Pawlowsky-Glahn, Vera, Ed., Proceedings of IAMG’97 — The Third Annual Confer-
ence of the International Association for Mathematical Geology. International Center for
Numerical Methods in Engineering (CIMNE), Barcelona (E), 151-156.

Martin-Ferndndez, J. A., C. Barcel6-Vidal, and V. Pawlowsky-Glahn (1998a). Measures of
difference for compositional data and hierarchical clustering methods. In: A. Buccianti,
G. Nardi, and R. Potenza, Eds., Proceedings of IAMG’98, The Fourth Annual Conference
of the International Association for Mathematical Geology, De Frede, Naples (I), 526-531.

Martin-Ferndndez, J. A., C. Barcel6-Vidal, and V. Pawlowsky-Glahn (1998b). Medida de
diferencia de Kullback-Leibler entre datos composicionales. In: Actas del XXIV Congreso
Nacional de la Sociedad de Estadistica e Investigacidn Operativa (SEIO), Almeria (E),
291-292.

Martin-Ferndndez, J. A., C. Barcel6-Vidal, and V. Pawlowsky-Glahn (1998c). A critical
approach to non-parametric classification of compositional data. In: A. Rizzi and M.
Vichi and H.-H. Bock, Eds., Advances in Data Science and Classification. Proceedings of
the 6th Conference of the International Federation of Classification Societies (IFCS’98),
Universita “La Sapienza”, Rome (I), 49-56.

Martin-Ferndndez, J. A., M. Bren, C. Barcel6-Vidal, and V. Pawlowsky-Glahn (1999).
A measure of difference for compositional data based on measures of divergence. In:
Lippard, S. J. and Neass, A. and Sinding-Larsen, R., Eds., Proceedings of IAMG’99,
The Fifth Annual Conference of the International Association for Mathematical Geology,
Tapir, Trondheim (N), 211-216.

Martin-Ferndndez, J. A., C. Barcel6-Vidal, and V. Pawlowsky-Glahn (2000). Zero replace-
ment in compositional data sets. In: Kiers, H.A.L:, Rasson, J.-P., Groenen, P.J.F., and
Schader, M., Studies in Classification, Data Analysis, and Knowledge Organization (Pro-
ceedings of the 7th Conference of the International Federation of Classification Societies
(IFCS’2000), Namur (B), 155-160.

Mateu-Figueras, G., C. Barcel6-Vidal, and V. Pawlowsky-Glahn (1998). Modeling compo-
sitional data with multivariate skew-normal distributions. In: A. Buccianti, G. Nardi,
and R. Potenza, Eds., Proceedings of IAMG’98, The Fourth Annual Conference of the
International Association for Mathematical Geology, De Frede, Naples (I), 532-537.



20 C. Barcel6-Vidal et al.

Pawlowsky-Glahn, V. and C. Barcel6-Vidal (1999). Confidence regions in ternary diagrams.
Terra Nostra (Schriften der Alfred-Wegener-Stiftung) (99)(1), 37-47.

Pawlowsky-Glahn, V. and J. J. Egozcue (2001a). About BLU estimators and compositional
data. Mathematical Geology, (accepted for publication).

Pawlowsky-Glahn, V. and J. J. Egozcue (2001b). Geometric approach to statistical analysis
on the simplex. SERRA, (in press).

Pearson, K. (1897). Mathematical contributions to the theory of evolution. On a form of
spurious correlation which may arise when indices are used in the measurement of organs.
Proceedings of the Royal Society of London LX, 489-502.

Tangri, D. and R. Wright (1993). Multivariate analysis of compositional data: Applied com-
parison favour standard principal components analysis over Aitchison’s loglinear contrast
method. Archaeometry 35(1), 103-111.

Tauber, F. (1999). Spurious clusters in granulometric data caused by logratio transforma-
tion. Mathematical Geology 31(5), 491-504.

Watson, D. F. (1990). Reply to Comment on “Measures of variability for geological data”
by D.F. Watson and G.M. Philip . Mathematical Geology 22(2), 227-231.

Watson, D. F. (1991). Reply to “Delusions of uniqueness and ineluctability” by J. Aitchison.
Mathematical Geology 23(2), 279.

Watson, D. F. and G. M. Philip (1989). Measures of variability for geological data. Mathe-
matical Geology 21(2), 233-254.

Whitten, E. H. T. (1995). Open and closed compositional data in petrology. Mathematical
Geology 27(6), 789-806.

Woronow, A. (1997a). The elusive benefits of logrations. In: Pawlowsky-Glahn, Vera, Ed.,
Proceedings of IAMG’97 — The Third Annual Conference of the International Associa-

tion for Mathematical Geology. International Center for Numerical Methods in Engineer-
ing (CIMNE), Barcelona (E), 97-101.

Woronow, A. (1997b). Regression and discrimination analysis using raw compositional data:
Is it really a problem? In: Pawlowsky-Glahn, Vera, Ed., Proceedings of IAMG’97 —
The Third Annual Conference of the International Association for Mathematical Geolo-
gy. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (E),
157-162.

Zier, U. and S. Rehder (1998). Grain-size analysis: A closed data set problem. In: A.
Buccianti, G. Nardi, and R. Potenza, Eds., Proceedings of IAMG’98, The Fourth Annual
Conference of the International Association for Mathematical Geology, De Frede, Naples,
555-558.



	Summary
	1. Introduction
	2. The space of compositions
	3. The logarithmic transformation on the composition space
	4. The compositional space and a real vector space
	5. The compositional space as an Euclidean space
	6. Bases in the compositional space
	7. Conclusion
	References

