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Summary . Compositional data record the relative proportions of different components within
a mixture, and arise frequently in many fields. Standard statistical techniques for the analysis
of such data assume the absence of proportions which are genuinely zero. However, real data
can contain a substantial number of zero values. We present a latent Gaussian model for the
analysis of compositional data which contain zero values, which is based on assuming that
the data arise from a (deterministic) Euclidean projection of a multivariate Gaussian random
variable onto the unit simplex. We propose an iterative algorithm to simulate values from this
model, and apply the model to data on the proportions of fat, protein and carbohydrate in
different groups of food products. Finally, evaluation of the likelihood involves the calculation
of difficult integrals if the number of components is more than three, so we present a hybrid
Gibbs-rejection sampling sampling scheme that can be used to draw inferences about the
parameters of the model when the number of components is arbitrarily large.

Keywords: Unit sum constraint; Nutrition; Dietary composition; Gibbs sampling; Approximate
Bayesian Computation

1. Introduction

This paper is concerned with the analysis of compositional data that contain zero values.
Motivation is provided by data on the proportions of protein, fat and carbohydrate that
are contained in a range of different food products. The proportions of the nutrients vary
widely between products: for example, “boiled leeks” contain 9.4% fat, 2.3% protein and
88.3% carbohydrate, whereas “raw swordfish” contain 83.2% fat, 16.8% protein and no
carbohydrate. Proportions for four particular food groups are plotted in Figure 1 using a
ternary diagram - this is an equilateral triangle, whose vertices represent the three elements
of the composition; points which lie close to a vertex have high proportions of the element
represented by that vertex, whilst points lying in the centre of the triangle have equal
proportions of all three elements. Our interest is in attempting to describe the properties of
the data for individual groups, and in comparing the nutritional properties of food products
in different groups; in particular, to test whether there are significant differences in the
composition of the four groups of meat products (beef, pork, poultry and lamb), and between
meat and fish products.

The data are compositional, in that they record information about the relative fre-
quencies associated with different components of a system - in this case the proportions
associated with different nutrients. Compositional data routinely arise in disciplines such
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Fig. 1. Proportion of protein and fat in products belonging to four food groups that contain a relatively
large number of zero values. Data are taken from the Nutrient Dataset for Standard Reference (Agri-
cultural Research Service, US Department of Agriculture, 2006). Compositional data are constrained

to lie within the unit simplex (shown in grey).
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as geology, economics and ecology, and it has long been recognised that they should not
be analysed using standard statistical methods because of the intrinsic constraints that (a)
the proportions associated with each component must lie between zero and one and (b)
the proportions associated with the various components must sum to one. In geometrical
terms, a D-dimensional random variable Y is compositional if it is constrained to lie in the
unit simplex,

Sp={yeRP:y"1=1,y €01}

Aitchison (1986) demonstrated that compositional data could be treated in a statistically
rigorous fashion by analysing the log-ratios of the proportions, rather than the proportions
themselves, and proposed a suite of statistical methods based upon assuming a multivariate
Gaussian distribution for these log-ratios. These ideas have subsequently been developed
into a comprehensive set of statistical tools (Aitchison and Egozcue, 2005), and the theo-
retical and practical aspects of compositional data analysis (CODA) remain active fields of
methodological research (e.g. Egozcue et al., 2006, von Eynatten et al., 2002).

Certain food groups within the nutrition data contain a high proportion of products for
which one or more of the nutrients is absent - for example, the proportion of fat in “dried egg
white” is zero, and the proportions of protein and carbohydrate in “bacon grease” are both
zero. Similar issues arise in data on seabird dietary intake (e.g. Bull et al., 2004), in pollen
data (Salter-Townshend and Haslett, 2006), and in a wide range of other applications. The
approach proposed by Aitchison breaks down when the proportions associated with some or
all of the components may be zero, because it is no longer possible to calculate the log ratios
between the different proportions. Rigorous methods for dealing with the situation in which
zero values arise solely through the rounding off of small values have been developed (Elston
et al., 1996; Fry et al., 2000; Martin-Fernandez et al., 2000; Martin-Ferndndez et al., 2003;
Martin-Ferndndez et al., 2003; Fry and Chong, 2005; Palarea-Albaladejo et al., 2007a,b).
Models to deal with the possibility that zero proportions in the data may correspond to
genuine absences of the component concerned (‘structural zeroes’) have also been proposed
(Aitchison and Kay, 2003; Bull et al., 2004), and, in a limited number of cases, used (Bacon-
Shone, 2003; Adolph, 2004). There is currently, however, no established methodology for
dealing with structural zeroes.

Latent Gaussian models provide a general approach for the analysis of data that are
constrained to lie on a subset of the real space RP. They are based on the idea that the
observed data Y are related, via a transformation g, to a latent variable Z that has a
(univariate or multivariate) Gaussian distribution with unknown parameters. The form of
the function g may or may not depend upon the values of additional unknown parameters.
Latent Gaussian model have been successfully used to deal with the presence of zero values
in a range of applications (Tobin, 1958; Allcroft and Glasbey, 2003a,b), and in this paper
we argue that an analogous approach can be used for the analysis of compositional data
that contain zero values.

We introduce our proposed model in Section 2, outline an iterative algorithm for sim-
ulating realisations from this model, and present the likelihood function associated with
the model. In Section 3 we apply the model to data on the proportion of fat, protein and
carbohydrate in different food products. We show (Section 4) how Bayesian methods can
be used to draw inferences about the parameters of the model when the number of compo-
nents D is relatively large. In the discussion (Section 5) we outline some of the theoretical
limitations of our model, and discuss situations in which the latent Gaussian approach will
or will not be appropriate, before outlining some possible ways in which this work could be
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extended.

2. Proposed latent Gaussian model

We propose to model the distribution of Y using a latent Gaussian model. More specifically,
we assume that
where Z is a multivariate Gaussian distribution with mean vector p and covariance matrix
>, and where g is a deterministic function.

The components of Y must sum to one, and we therefore impose the constraint that the
components of the latent variable Z must also sum to one. In geometric terms, this implies
that Z must lie on the unit hyperplane

Hp ={zcRP:z"1=1}.

Imposing such a constraint on the random variable Z is equivalent to imposing sum con-
straints on the parameters p and 3, such that 471 = 1 and ¥1 = 0. It follows that the
proposed model contains (D — 1) unknown parameters within the mean vector pu, and a
further (D — 1)D/2 unknown parameters within the covariance matrix 3.

2.1. Choice of transformation function

The function g determines the relationship between a value z of the latent variable Z,
and a value y of the observed variable Y. Throughout this paper, we take g to be the
function which minimises the (squared) Euclidean distance (y — z)” (y — z) between z and
g(z) =y, subject to the constraints y’1 = 1 and y > 0. In geometric terms, g performs
a Euclidean projection from the unit hyperplane Hp onto the unit simplex Sp. This
constrained optimisation problem can be solved by introducing Lagrangian multipliers, A
and ~, and seeking to minimise the Lagrangian

1

L=3-2"(y-2)-"1-Dr-y'y
with respect to y. Differentiation gives
oL
ayiT =(y—2z)—1x—»9,

which will be equal to zero if y = z+ 1A+ . By Theorem 9.4.2 of Fletcher (1981) this will
be a solution to the constrained optimisation problem under conditions of primal feasibility
(y'1 =1,y >0), dual feasibility (v > 0) and complementary slackness (y7~ = 0).

If we can find a set J C {1,..., D} which satisfies

j € Jif and only if z; + X <0, Where)\:M (1)

D—|J|’
then these conditions will be satisfied by taking the elements of y and + to be
_J0 it jeJ =it jed
yj_{zj+/\ if j¢J777J—{0 it j¢J (2)

Note that if the observed variable y lies on the interior of the unit simplex - that is,
if none of the components of y is equal to zero - then it is trivial to show that the latent
variable must be equal to the observed variable (so that z =y).
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2.2. Simulation of data

Simulation of data y from the proposed model involves (a) simulation of z from a multi-
variate Gaussian distribution with mean g and variance matrix ¥ using standard methods,
(b) identification of the set J, and (c) calculating the elements of y using Equation 2.

A simple algorithm can be used to evaluate the set J, which indexes the values of z
that will be transformed by ¢ to be zero. Let z(*) denote the element of z with rank k, and
assume that z() < 0 (since otherwise J is null and y = z). Then

(0) Let k =2;
(1) ¥+ 51— k+1zl 1 ' 20 >0 then set J = {j : zj < 2},
(2) Otherwise set k =k + 1 and return to step (1).

It can be shown that this leads to a set which satisfies the condition given in Equation
1. If ¢(j, k) = 20) + D%kﬂ Z;:ll 2 then we need to show that ¢(j,k) < 0 for j < k
and ¢(j,k) > 0 for j > k. We know that ¢(k,k) > 0, and is true by definition that
o+ 1,k) > &(j, k) for all 4, so it is sufficient to show that ¢(k — 1, k) < 0. Now

D—k+2 ),

_D—-k+2
_ - rre PO _ _
otk —1,k) = D—k+1" D k+lz T D- k+1¢(k LE-1).

We know that ¢(k —1,k—1) < 0, since the algorithm failed to terminated at the (k —1)-th
step, and it follows that ¢(k—1,k) < 0, as required. Note that z(”) +D—;D+1 ZIDZEI 20 =1,
so the algorithm will always terminate for some k < D.

2.3. Special cases

If D = 2 then the proportion associated with the second component depends in a determin-
istic way upon the proportion associated with the first component, and our model reduces
to assuming that we have a univariate random variable Y € [0, 1] that is defined by

0 if Z<O0
Y = Z if 0<Z<1
1 if Z>1,

where Z ~ N(u,0?).
Now consider the case D = 3. We can assume, without loss of generality, that the
elements of Z are arranged in ascending order, so that 77 < Z5 < Z3. Then

Z if Z; >0
Y = (O,ZQ+Z1/2,Zg+Zl/2) isz-f—Zl/QZOaIld Z1 <0
(0,0,1) otherwise,

where Z ~ MVNj3(p, X)) and Z71 = 1.
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2.4. Likelihood

Let y = (y1,...,yn) denote n iid realisations from a random variable Y whose distribution
is given by the proposed latent Gaussian model with unknown parameters 6 = (u, ). The
log-likelihood function is of the form

D logP(Y =y, %)

i=1

= Zlog]P’(Z c{zic Hp:9(z) =yi}; 11, %)

i=1

n 1/, TSN—1(,. _
_ Zlog/ exp( g(zz )X (2 N)) dz;.
i=1 {

z;€Hp:g(z:)=yi} (27T)n‘2|

log P(Y = y|0)

If D = 2 then the log-likelihood associated with a set of iid observations v, ...,y is

2
K P R AN log2ry 1 Yi—p
|L|log(I><U>+|U|log{1 c1>( ~ )} |M|(1oga+ : > QZ - :

ieM

where L={i:y; =0}, U={i:y;, =1} and M = {i: 0 < y; < 1}, and where ® denotes the
cumulative distribution function of the standard Gaussian distribution. The log-likelihood
for the case D = 3 is given in Appendix A.

3. Nutritional composition of food products

Publicly available data from the Agricultural Research Service, US Department of Agricul-
ture (2006) record the nutritional compositional of 7270 individual food types or products,
classified into 25 different food groups. The database aims to provide a relatively com-
prehensive coverage of currently available food products, and to achieve this by collating
information derived from the widest possible range of published and unpublished sources.
The selection of food types is consequently dependent primarily on data availability, rather
than on any systematic attempt to sample from the set of all food products. Sampling
methodologies for the collection of nutrient data also differ between food types, leading to
heterogeneity in data quality and precision.

We do not address these issues here, but focus on comparing the relative proportions of
protein, fat and carbohydrate between different food groups. We concentrate on the eight
groups - beef, beverages, ethnic, fats, fish, lamb, pork and poultry - that contain zero values
in at least one nutritional component for more than 25% of the foods within that group;
the remaining food groups contain either a low proportion of zero values (e.g. spices, baby
food) or contain no zero values whatsoever (e.g. vegetables, snacks).

We estimate the parameters of the model by numerical maximisation of the likelihood
function using the Nelder-Mead algorithm, and use the inverse of the observed information
matrix as an approximation to the associated covariance matrix. The observed information
is found by evaluation of the Hessian matrix at the maximum likelihood estimates. All
computations are performed in R (R Development Core Team, 2006), Version 2.1.1, and
optimisation is performed using the optim function. For the five groups that are of most
interest (the meat and fish groups) we have verified that the results obtained by maximum
likelihood are close to those obtained using the Bayesian approach that we will introduce
in Section 4.



A latent Gaussian model for compositional data with zeroes 7

Table 1. Maximum likelihood estimates for the five parameters of the latent Gaussian model,
as fitted (separately) to data for eight food groups in the USDA dataset. Standard errors are
also given, in brackets.

Food group 1 12 Y11 Yoo Y12

Beef 833 (.032) 505 (.032) | .0337 (.0042) .0292 (.0034) -.0159 (.0030)
Lamb 844 (.038) 473 (.039) | .0309 (.0050) .0507 (.0090) -.0228 (.0045)
Pork 669 (.011)  .358 (.011) | .0319 (.0008) .0365 (.0010) -.0318 (.0002)
Poultry 771 (.013) 334 (.011) | .0410 (.0037) .0239 (.0021) -.0214 (.0022)
Fish 930 (.025)  .302 (.022) | .0623 (.0090) .0261 (.0045)  .0086 (.0058)
Fats .010 (.005) 1.088 (.037) | .0012 (.0002) .1717 (.0268) -.0063 (.0021)
Ethnic 553 (.037) 273 (.027) | .1640 (.0228) .0862 (.0123) -.0014 (.0013)
Beverages .064 (.015)  -.010 (.011) | .0445 (.0052) .0166 (.0023) .0048 (.0023)

Maximum likelihood estimates are given in Table 1, and the probability contours of the
fitted model are presented in Figure 2 for four of the food groups; for each group we also
show a simulated dataset, generated by setting the parameter values equal to the maximum
likelihood estimates. Note that the MLEs for u lie outside the unit simplex for seven of the
eight food groups, reflecting the fact that the data for each group contain a high proportion
of zero values in one or two of the three components but a low proportion of zero values in
the remaining components. For example, the four meat groups - pork, poultry, lamb and
fish - tend to contain a high proportion of fat and protein but a low or zero proportion of
carbohydrates.

Using Table 1 we compare the distribution of the maximum likelihood estimates for
the five groups which relate to meat or fish products. We can see by eye that there are
differences between the parameter estimates of the different groups. In particular, estimates
for the “fish” group differ markedly from those associated with the other four groups. Model
selection procedures based on likelihood ratio testing and the Akaike Information Criterion
reach the same conclusion - that the best model retains separate parameters for each of the
five groups, rather than attempting to pool parameters across two or more of the groups.

In Table 2 we assess goodness of fit by comparing the observed frequencies with which
particular patterns of zero values occur against the corresponding values that we would have
obtained from the fitted model. A comparison of these frequencies provides an important
indicator of the extent to which the model provides a reasonable description of the data.
We see that the “observed” and “fitted” frequencies are typically very similar for the groups
that relate to meat and fish products: lamb, fish, beef, pork and poultry. For these groups,
the observed data indicate that foods either contain only protein and fats, or else contain
all three nutrient types, and the model performs well in distinguishing the frequency with
which the data belong to these two groups. The only discrepancy is that the fitted model
suggests that there should be a small number of food products containing “only protein”,
and, for pork and fish, an even smaller number containing “protein and carbohydrate”,
whereas there are no such products in the real data.

There are discrepancies between observed and modelled frequencies for the remaining
three groups - “fats”, “beverages” and “ethnic” - indicating lack of fit: in particular, the
model tends to under-estimate the proportion of points that lie on the interior of the simplex,
and to over-estimate the proportion that lie on the vertexes. The poor performance of the
model reflects the fact that these are heterogeneous groupings of food products, and that
the data for these groups show evidence of multi-modality. Our model could be adapted to
deal with multi-modal data by regarding Z as a mixture of Gaussian distributions, but we
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Fig. 2. Latent Gaussian model fitted to four food groups in the USDA dataset by maximum likelihood.
Contours of the fitted latent distribution (i.e. z) are shown (shaded), together with simulated data from
the fitted model (crosses) - i.e. y = g(z). Simulated datasets are of the same size as the original
dataset for that group.
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Table 2. Observed and expected patterns of zero values in the USDA data for
eight individual food groups. We tabulate the number of products that contain
only protein (p), only fat (f), only carbohydrate (c), only protein and fat (pf), only
protein and carbohydrate (pc), only fat and carbohydrates (fc), and all three
nutrients (pfc). Expected values are calculated by numerical integration, based
on the maximum likelihood estimates. The corresponding standard errors (SE)
np(1 — p), where n is the number of products in the food
group and p is the expected proportion of values having that pattern of zero

are calculated as

A latent Gaussian model for compositional data with zeroes

values.

Food group Number of individual foods
p f c pf pc fc pfc
Beef Observed 0.0 0.0 0.0 | 767.0 0.0 0.0 22.0
Expected | 11.3 0.0 0.0 | 755.8 0.3 0.0 21.6
(SE) 3.3 0.1 0.0 5.6 0.5 0.0 4.6
Lamb Observed 0.0 0.0 0.0 | 327.0 0.0 0.0 16.0
Expected | 12.2 0.0 0.0 | 315.2 2.2 0.0 13.4
(SE) 3.4 0.1 0.0 5.1 1.5 0.0 3.6
Pork Observed 0.0 0.0 0.0 | 184.0 0.0 0.0 | 105.0
FExpected 6.0 0.0 0.0 | 185.1 4.0 0.0 93.9
(SE) 2.4 0.2 - 8.2 2.0 0.1 8.0
Poultry Observed 0.0 0.0 0.0 | 254.0 0.0 0.0 84.0
Expected | 14.0 0.0 0.0 | 242.6 14 0.0 79.9
(SE) 3.7 0.0 0.0 8.3 1.2 0.2 7.8
Fish Observed 0.0 0.0 0.0 | 193.0 0.0 0.0 56.0
Expected | 19.4 0.0 0.0 | 170.8 6.2 0.0 52.5
(SE) 4.2 0.0 0.1 7.3 2.5 0.1 6.4
Fats Observed 0.0 107.0 0.0 8.0 0.0 4.0 85.0
Expected 0.0 114.7 0.4 7.9 0.4 19.8 60.8
(SE) 0.0 7.1 0.7 2.7 0.7 4.2 6.5
Ethnic Observed 0.0 4.0 1.0 41.0 1.0 1.0 84.0
Expected 6.6 0.1 3.9 419 18.0 8.3 53.2
(SE) 2.5 0.3 1.9 5.3 3.9 2.8 5.6
Beverages Observed 4.0 0.0 49.0 3.0 63.0 10.0 | 101.0
Expected 0.0 0.0 79.3 0.0 575 204 72.8
(SE) 0.0 0.0 7.2 0.2 6.6 4.3 7.1

have not attempted such an extension here.

9

Our analysis should be regarded as exploratory rather than definitive, since we have
assumed here that the nutritional data for products within a particular food group are
independent and identically distributed. In reality, methods of sampling and levels of intra-
product variability will differ markedly between individual food products, and the data are
probably subject to residual dependence at the level of products within groups. In addition,
the products are not of equal importance in terms of human consumption, and would ideally
be weighted according to data on intake. It should, at least in principle, be possible to deal
with each of these issues by adapting or extending the latent Gaussian model.
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4. Inference in higher dimensions

The integrals involved in calculating the log-likelihood function (3) are straightforward
when D = 2 or 3, for the choice of g that we have adopted, but become difficult once
D is moderately large (e.g. D > 4) because the sets {z € Hp : g(z) = y} become
increasingly complex and difficult to define. Numerical maximum likelihood estimation
does not, therefore, provide a viable approach to statistical inference for general D. An
alternative, Bayesian, approach is to assign a prior distribution 7(6) to the parameters 6 =
(1, %), and to draw inferences about 6 by simulating values from the posterior distribution
of O)y.

A standard method for simulating the posterior distribution of 8|y is to generate values
from a Markov chain whose equilibrium distribution is equal to 8|y (Markov chain Monte
Carlo; Gilks et al., 1996), and the simplest way to do this is via Gibbs sampling (Casella
and George, 1992). For our model, we suggest the use of a hybrid Gibbs-rejection sampling
algorithm that alternates between two steps

1 simulation of z|(y, #) using the rejection algorithm presented in Appendix B; and
2 simulation of parameter values from 0|(z,y) = 0|z;

following initialisation of the parameters 6. The algorithm generates a series of dependent
realisations from the posterior distribution of |y, once convergence to the equilibrium
distribution of the chain has been achieved. Standard Bayesian methods allow us to simulate
from the parameters of the multivariate normal distribution, #|z. The parameters are
subject to sum constraints (471 =1 and ¥1 = 0), so, to avoid singularities, we work only
with the first D — 1 components of u and X.

We do not wish to make any strong prior assumptions about the values of the parameters
0 = (u,X). One possibility is to adopt the Jeffrey’s prior (Jeffreys, 1946)

(1, 2) o< 3|7 PD/2, (3)

which is uninformative (diffuse) and invariant to reparameterisation. Simulation of 8|z then
depends on a Gibbs algorithm that alternates between

2a simulation of (u|X,z) = (u|X,z) from a multivariate normal distribution with mean
vector Z = ., z;/n and variance matrix ¥/n; and

2b simulation of (X|u,z) = (X|u,z) from an inverse Wishart distribution with D +n — 1
n T

degrees of freedom and variance matrix V(z) = >, ,(z; — p)(z; — p)" .
The prior in Equation 3 is improper, however, and we cannot demonstrate that it will
necessarily lead to a proper posterior distribution for (0,z)|y (Robert and Casella, 1999,
pp. 328-329).

An alternative approach would involve assigning proper but diffuse priors to g and X.
The complicating factor is that these prior distributions would need to fulfil the constraints
u'1l =1 and ¥1 = 0, and that we would also expect that they ought, in the absence of
any genuine prior information, to be symmetric in the components of Y. Priors for the
variance matrix are conventionally formulated in terms of a distribution for the precision
matrix, ¥, but this approach is not possible here because ¥ is singular. The construction
of appropriate proper prior distributions therefore appears to be non-trivial.



A latent Gaussian model for compositional data with zeroes 11

4.1. Simulation study

We use a small simulation study to compare the posterior means and credible intervals
generated by the rejection-Gibbs scheme against the corresponding estimates and confidence
intervals generated by numerical maximum likelihood. We restrict attention to the case
D = 3 (qualitatively similar results are obtained using D = 2, not shown), and apply the
methods to four datasets, each of size 200. The values of p are taken to be either (A)
t1 = po = pus = 1/3 or (B) w1 =4/3, us = p3 = —1/6 and the covariance matrix is either
(a) Z=0/9 or (b) £ =, where Q = (31-1)/2. In dataset Aa a high proportion of points
lie on the interior (104/200) with few on the vertexes (9/200), whilst in datasets Ba and
Bb the majority of points lie on the vertexes (148 and 134, respectively) and few lie on the
interior (4 and 10 respectively). Dataset Ab is intermediate, with 23 points on the interior
and 85 on the vertexes.

Maximum likelihood estimates are computed via numerical optimisation, with confidence
intervals constructed either using the inverse of the hessian or via profile likelihood - the
latter is more computationally intensive, but allows for asymmetry in the distributions of
the parameter estimators. The MCMC results for datasets Aa and Ab are based on 50000
iterations, following a burn-in of 10000 iterations. The results for datasets Ba and Bb
are based on four parallel chains, each of length 60000, which were started from widely
dispersed initial values - these chains are then combined, so that the final results are based
on 200000 iterations. The Heidelberger-Welch tests, Geweke Z-scores, and (for datasets Ba
and Bb) the Gelman-Rubin convergence diagnostics detected no significant evidence of non-
stationary. The chain lengths and burn-in periods were selected based on the Raftery-Lewis
convergence diagnostic, and on visual inspection of the trace-plots.

For datasets Aa and Ab, in which the majority of data lie on the interior or edges of the
simplex, we see (Figure 3) that the results obtained using MCMC are very similar to those
obtained via numerical maximum likelihood. For datasets Ba and Bb most of the data lie
at the vertexes, so that, in the context of our model, these data contain a high proportion of
fully or partially censored values. The high degree of censoring leads to a shallow gradient
in the likelihood function, and so presents challenging problems for statistical inference.
We see that there are reasonably substantial differences between the results obtained using
maximum likelihood and MCMC, with the credible intervals obtained via MCMC tending
to be wider than the corresponding confidence intervals based on the profile likelihood.

5. Discussion

We have outlined a novel methodology for analysing compositional data that contain zero
values, and have illustrated the application of the model to simulated and real data. The
latent Gaussian model that we have proposed is conceptually simple, and similar to models
that are used in many other contexts to describe the properties of data which are subject
to constraints. The model is relatively parsimonious, especially when D is large, and the
parameters should be estimable even from data that contain a high proportion of zero
values. Simulation from the model is also straightforward, because of the assumption that
the latent variable is multivariate normal.

We acknowledge, however, that there are theoretical difficulties with the model that we
have proposed. In particular, the model treats compositional data which lie on the interior
of the unit simplex as having arisen from a multivariate normal distribution. In doing so,
it violates two of the principles - scale invariance and subcompositional coherence - that
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Fig. 3. Maximum likelihood estimates with 95% confidence intervals (lower) and posterior means with
95% credible intervals (upper) for each parameter in each of the four simulated datasets (Aa, Ab, Ba
and Bb). Confidence intervals are calculated using both profile likelihood (black) and the inverse of
the hessian evaluated at the MLE (grey), except for dataset Ba (where the profile likelihood failed to
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models for data on the interior of the simplex should adhere to (Aitchison, 1986; note that
it does adhere to the third property, that of permutation invariance). Scale invariance
requires that all inferences should be expressed solely in terms of the ratios of proportions,
whilst subcompositional coherence requires that inferences about a particular subset of
components should be unaffected if components outside that subset are combined together.
Any approach that attempts to describe zero and non-zero proportions using a common
model will inevitably break these principles, because ratios of proportions are infinite along
the boundaries of the simplex. A related issue concerns the interpretation of the model
parameters, u and X, which do not - for the reasons outlined by Aitchison (1986) - have any
natural or convenient interpretation in terms of the statistical properties of Y. In particular,
the unit sum constraint implies that the elements of the covariance matrix, 3, cannot be
used as a basis for making statements about the (in)dependence of components of Y. As
a result, our model should not be used as a basis for principal components analysis, or for
other methods that use the form of ¥ to explore the dependence structure of Y.

Although our model in principle provides a basis for the analysis of any compositional
dataset containing zero values, these theoretical limitations imply that, in practice, it should
only be used (a) in situations where existing methods are unavailable or inappropriate, (b)
as a diagnostic tool to assess the performance of other methods, or (c) for exploratory
data analysis. Zero values that arise as a result of rounding error can be dealt with using
zero replacement strategies, so situation (a) will generally only apply to data that contain
structural zeroes. In that context, a hierarchical approach (Aitchison and Kay, 2003) can
be used if the ratio of data to components is relatively large, but may not be viable if the
data are sparse or contain a high proportion of zero values. The potential diagnostic uses of
our model merit further research. The model provides a basis for drawing inferences about
the patterns of zero values, and, in particular, for calculating the probability that data will
lie on a particular vertex or edge of the simplex. These probabilities could subsequently be
used, for example, to assist in the formulation of an appropriate hierarchical model, or for
the detection of outliers in the context of a zero replacement model.

Our model makes implicit assumptions about the relative frequencies with which data
lie on the vertexes, edges and interior of the unit simplex. These assumptions depend on
the form of the function, g, that has been selected to describe the relationship between
the latent variable Z and the data Y. We have chosen g such that it performs a Euclidean
projection from the unit hyperplane to the unit simplex, since the Euclidean transformation
is widely used and has attractive general theoretical properties. One drawback of this choice,
however, is that inferences about the distribution of particular component, Y7, will differ
depending on whether or not we choose to aggregate some of the other components within
Y. It would therefore be interesting to explore the theoretical and empirical properties of
alternative transformation functions. We would, ideally, like to infer the form of g based
on the empirical properties of Y, by, for example, estimating the unknown parameters
associated with a flexible parametric family of possible transformation functions, but we
expect that real compositional datasets will rarely contain sufficient information to enable
us to distinguish between alternative choices for g.

Finally, we have applied the model to data with three components, in order to illustrate
the methodology, but we acknowledge that most practical applications involve four or more
components. The hybrid Gibbs-rejection sampling approach offers a promising approach
to inference in higher dimensions, but requires further refinement in order to provide an
efficient and robust algorithm for use in that context. Approximate Bayesian Computation
provides a possible alternative approach to inference in situations where, as here, the like-
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lihood function is difficult to compute, but initial simulation studies have suggested that
these methods have relatively poor performance in the context of our model (Butler et al.,
2007). Another important issue, which becomes critical in higher dimensions, concerns the
assessment of model fit in latent Gaussian models, and in future research we hope to develop
diagnostic tools that are appropriate for this purpose.
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Appendix A: form of the log-likelihood function when D=3

Let D = 3 and consider the log-likelihood contribution from a single point y = (y1,y2,¥3)-

Interior
If y lies in the interior of the unit simplex, so that y; > 0,y2 > 0,y3 > 0, then

3 1 1 ~
log P(Y =y) = —3 log(27) — 5 log 3] = S (y =)= (y — ).

Vertexes
If y lies at a vertex of the unit simplex, then we can assume without loss of generality that
vy =1(0,0,1). f A={z € H; : g(z) = (0,0,1)} then

exp (—5(z— p)"S "1 (z — 1))
(2m)?[x]

logP(Y =y) = 1og/
A

We know that z € A if and only if z; + 22/2 < 0 and 29 + 21 /2 < 0. Let u = ATz, where

so that

Z9 — 21 zZ1 — 22 4 z9 4 Z1
(2252 en) - (-4l i [ 3),
u < 3 + z3 3 +Z3) < 3 21—|—2 3 2’2+2

It follows that z € A if and only if u; > 1 and ug > 1, so that

du.

(00,00) _1 7AT T ATEA -1 7AT
log (Y = (0.0,1)) = log | exp (Z3(u = AT ATEA) D u A7)
u=(11) 2m)2[ATSA|

Equivalent formulae can be derived for other vertexes simply by switching labels. The
bivariate integral can be evaluated using standard algorithms.
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Edges
We can assume, without loss of generality, that y = (0, y2,y3) for y2 > 0,y3 > 0. Hence
log P(Y =y) =logP(Ya = y2, Y3 = y3) + log P(Y1 < 0|Y2 = y2, Y3 = y3).
We perform a change of variable. Let U = BTY, where

. 0 V3
B=—1|1 o0 [,
V311

so that U; = Y] and U = (Y2 — Y3)/v/3. It follows that U ~ N(m, ¥), where m = BTy
and ¥ = BTYB. If u = BTy then

logP(U =u) = logP(Us = usz) +logP(U; < 0|Uz = us)
Yia(uz—m2)
1 — 2 m +
= 77(1og27r+10g\1122)*w+10g@ A P22 ,
2 2\1122 w2
Wi — g2
Va2

where ® denotes the cumulative distribution function for a standard Gaussian distribution.

Appendix B: algorithm for simulating z|(y,p, )

We present an algorithm for simulating values of the latent variable z € Hp conditionally
upon data y € Sp and upon values of the parameters p and ¥; this is used in the hybrid
rejection-Gibbs sampling algorithm of Section 4. Let

J={1<k<D:y,=0}
denote the set of the indices of the components of y which are zero. Then the algorithm
proceeds as follows:
(a) If |J] = 0 then set z =y and exit;

(b) Repeatedly simulate z; from a |J|-dimensional multivariate normal distribution with
mean py and variance matrix ;7 until we generate a value such that

) Ut ()
J J
z25 + —_
J Z D—-j+1
k=1
(c) Calculate the remaining components of z using
z_y=y-;—(1/(D—|J])z]1,

The justification for the algorithm relies on recognising that it is just a variant of rejection
sampling. The most direct way to generate values of z|(y, 1, ¥) would be to simulate z from
a multivariate normal distribution with mean g and variance matrix 3, and to accept z if

and only if g(z) = y. However, we already know, from Section 2.2, that values of z must
fulfil the constraint that

< 0 for all j < |J;

z_y=y-;— (1/(D—|J])zs1.
It follows that it is only necessary to simulate the subset of values z; relating to the set of
components for which y has zero values, since the remaining values z_ ; will depend upon
these in a deterministic way. Section 2.3 also provides us with the order restrictions that the
elements of z; must satisfy to ensure that g(z) =y, and step (b) of the algorithm involves
checking that these restrictions do indeed hold for the value of z; which we have simulated.
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