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Abstract

This paper offers an explication of two techniques for compositional data analysis, which involve
non-negative data belonging to mutually exclusive and exhaustive categories. The Dirichlet distribution
is a multivariate generalization of the beta distribution that offers considerable flexibility, and ease of
use, but requires a strong form of an “independence of irrelevant alternatives” (IIA) assumption. The
second application, proposed by Aitchison (1986) and applied to political data by Katz and King (1997),
is the additive logistic method. This approach addresses the strong ITA assumption, but cannot handle
strong forms of independence (Rayens and Srinivasen 1994). Monte Carlo simulations are employed on
compositional data to explore the limits of applications of the two methods. Data on police officers’
allocation of time across a variety of tasks (Ostrom et al. 1988) is used in this analysis. Comparing both
common covariates and unique covariates. When the composites are influenced by common covariates,
there appears to be no advantage in the use of additive logistic methods over the Dirichlet. Similarly,
the additive logistic and Dirichlet methods appear to be equally successful at estimating the effects of
the unique covariates on composites. From these simulation results we conclude that the additive logistic
method offers little advantage over the Dirichlet, and suffers from several disadvantages.

Prepared for presentation at the 1998 annual meeting of the Society for Political Methodology. Thanks to
Jeff Gill, Jonathan Katz, and Gary King for consultation.



1 Compositional Data Analysis

Compositional data analysis offers the opportunity for new approaches to problems of long-standing im-
portance in the social sciences. The method refers to analysis of non-negative data referring to mutually
exclusive and exhaustive categories, where the data sum to one. The constraints thus imposed on the data
mean that analysis of any one category must take into account the balance in the other categories: an in-
crease in one category must be compensated by a decrease distributed across all the other categories. That

is, for each observation ¢ within J composites.

Yij > 0, VjZI...J (1)
J
Zyij = 1. (2)
j=1

These two features mean that the composites y;; constitute a simpler. Mathematical features of a simplex
will mean that the distributions of the y;; are not fully independent. For example, if one knows the values
of yi1 up through y;;_1), then one knows the value of y;;.

This paper offers an explication of two techniques for compositional data analysis. One technique (in
more common use prior to 1986) is application of maximum likelihood estimates of Dirichlet densities; the
other technique, popularized by John Aitchison in 1986, is application of seemingly unrelated regression-
like analysis of log-ratios of composites. Ultimately, the purpose of this paper is to employ Monte Carlo
simulations of compositional data taking different archetypal forms to explore the limits of applications of the
two methods. The paper begins with further substantive motivation behind use of the methods; second, turns
to an elaboration upon the two approaches; and third, provides details about the Monte Carlo simulations
and the implications of simulation results.

Jonathan Katz and Gary King have recently developed and applied one class of methods for compositional
data analysis (maximum likelihood estimates of the additive logistic multivariate-¢ density) to multiparty
election results in the U.K. (1997). The proportion of each district’s vote that divides across the Conservative,
Labour, and Social Democratic parties is an excellent example of compositional data of interest to political
scientists. (Note that this is not the same as the multi-candidate choice problem at the individual level, since
the unit of analysis is the constituency (or other aggregate); nor is it an ecological inference problem, since
the inferences are about the effect of constituency wide variables, such as incumbency, on the aggregate).

There are other appropriate applications of compositional data analysis. Municipal, state, or federal



budgets may be another application, as long as the analysis is of the percentage of the total budget devoted
to particular budgetary lines. (Padgett (1981) offers an analysis of budgets which takes on the mathematical
form of compositional data analysis, although he does not label it as such. Padgett’s application is the first
application of the Dirichlet density in political science, to the best of our knowledge.) The percentage of
vote splits by ethnic or racial categories (as long as they are mutually exclusive and exhaustive) would be
another potential application.

The present substantive motivation is to analyze time budgets for public bureaucrats. In our prior
substantive explorations (Brehm and Gates 1997) of the behavior of public bureaucrats, we consider how
much effort (or time) bureaucrats devote to working relative to shirking. Our previous analysis demonstrated
that supervisors in public bureaucracies can influence the total amount of time or effort devoted by their
subordinates, through their use of greater monitoring or application of rewards and sanctions. However, such
coercive aspects of supervision were weaker influences on bureaucratic effort than intersubordinate influences,
pressures from “customers” (those receiving the services), and (most importantly) the recruitment process
into the bureaucracy. Using the language of the economics of the firm, we found that adverse selection
factors outweigh those associated with moral hazard.

Supervisors might have much greater effect upon how bureaucrats allocate their time across different
forms of working than upon the division of time between working and shirking. That is, suppose that there
are three tasks, A, B, and C. A and B are equally liked by the subordinate, and preferred to C' (A = B > C).
The supervisor, however, prefers C' > B > A. The supervisor acting as a coordinator will probably be more
successful in obtaining greater effort from the bureaucrat to task B than in encouraging effort to task C.

One of the essential duties of a supervisor is to allocate tasks across his or her subordinates. Supervisors
in this way serve as coordinators of an organization’s bureaucratic input. We presume that supervisors
will match tasks to subordinates in a manner that maximizes the production of an ideal policy mix for the
supervisor. In this manner we see a more complicated interaction between subordinates and superiors than

is typically modeled in principal-agent frameworks.
1.1 Police Data

Some specific data at hand come from the 1977 Police Services Study, conducted by Elinor Ostrom, Roger
Parks, and Gordon Whittaker in three cities (Rochester, St. Louis, and St. Petersburg). The study combined

multiple methods, including observations of police officers’ behavior during their shifts. The observational



data provides an excellent opportunity to test our propositions about the allocation of time across tasks.
At the conclusion of each shift, the observer recorded the amount of time officers spent on a total of eleven

tasks (italicized phrase or word denotes our label in subsequent graphs):
1. Time on administrative duties (Adm);
Time report writing (Rept);
Time out of car for foot patrol (not on an encounter or dispatched run) (Foot Pat);
Time on routine mobile patrol (Mob Pat);
Time at or en route to an encounter or dispatched run (Run);
Time on mobile traffic work (radar, vascar, etc.) (Mob Traf);
Time on stationary traffic work (radar, etc.) (Stat Traf);
Time on meals, other 10-7 breaks (Meal);
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Time on mobile personal business (Mob Pers);

[y
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Time on stationary personal business (Stat Pers);

11. Time on other stationary police work (surveillance, stake out, etc.) (Other);

We apply two different means for examining the amount of time an officer devotes to different tasks. The
first of these is the “ternary” diagram, and is most useful when one collapses the distribution of time across
tasks into three categories. Here, we consider time spent on personal business (time on meals, stationary and
mobile personal business), time completing paperwork (administration, reports), and time policing (mobile
and stationary traffic, runs, mobile and foot patrol, and other). The collapsing of time into three tasks
corresponds nicely with a division into a police officer’s principal responsibilities (policing and paperwork),
plus a category denoting time not devoted to official responsibilities (personal). In our previous analysis
(Brehm and Gates 1993, 1997), we facetiously referred to these as “donut shops” (shirking, here measured
as time on personal business) and “speed traps” (working). In the present analysis, we divide time spent
working between the categories of policing (“speed traps”) and paperwork.

If the amount of time spent on tasks is transformed into percentages of total time, and total time is
constrained to sum to 1, then the data are arranged on the simplex. One could produce a three-dimensional
scatterplot of the data across the three dimensions of tasks, but all of the points would fall on the triangular
plane intersecting the three axes at 1.0 (Figure 1). Instead, we focus solely on that triangular plane, displayed
in Figure 2.

The figure makes it quite clear that the majority of these officers’ time is devoted to policing. The mode of

the distribution is quite close to the extreme lower right corner, although there is a fair amount of dispersion
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Figure 1: Simplex for Three Dimensions Figure 2: Actual Distribution of Time on Simplex,
1977 Police Data

throughout the lower right trident of the ternary diagram. Only five officers spent a plurality of their time on
personal business, running counter to stereotypes about police behavior. Eight officers devoted a plurality
of their time to paperwork, including one officer who spent the entire shift on paperwork. There are also
some interesting edge conditions — officers who divided their time between either policing and paperwork,
or policing and personal business.

The second graphical display (Figure 3) involves use of a technique called the “checkerboard plot.”
Each officer is displayed as a vertical column of rectangles (here, quite thin—mearly lines—since we need
to display over 900 officers’ shifts). Each row of rectangles corresponds to one of the 11 tasks (e.g., mobile
patrol, meals). We shade each rectangle with a percentage gray to denote amount of time by the officer at
that task: rectangles which are completely white denote those tasks where an officer spent zero time at the
task, rectangles which are completely black denote those tasks to which the officer devoted his or her entire
shift, while those which are gray denote those tasks to which the officer spent some middling fraction. The
darker the gray, the more time devoted to the task.

As is readily apparent from the checkerboard plot, police officers spend the majority of their day confined
to two tasks: mobile patrol, and on route to an encounter. Officers spend the least amount of their time
on foot patrol, mobile and stationary traffic. Officers spend middling amounts of time completing reports

or performing other administrative duties, as well as on meals or stationary personal business. (The meals
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Figure 3: Checkerboard Plot of Actual Distribution of Time on Simplex, 1977 Police Data

category is in third place, on average, although distantly behind runs and mobile patrol).

As is also apparent, these patterns are strikingly homogeneous across the more than 900 police officers in
the three different cities. Although one can identify individuals who devote a plurality of time to adminis-
tration and reports (the dark lines in those sections of the plot), as well as those who engage in nearly twice
as much time at meals as other officers, the general pattern here is one of uniformity, not variation.

The substantive problem that motivates the present research is to identify the reasons why the officers
would devote more or less time out of their shifts to the different distributions of tasks. In turn, understanding
how street-level bureaucrats such as police officers allocate their time across tasks helps us better understand
the factors that affect the policy choices of bureaucrats. Although we are rather limited in our set of
explanatory variables, there are several that prove illuminating: number of contacts with the supervisor,
number of contacts with fellow officers, expressed likes (or dislikes) about colleagues, and expressed likes (or
dislikes) about the job. The idea would be to model the systematic component of an appropriate density,
and estimate the effect of changes in this (limited) set of variables on the components.

The purpose of this paper, however, is to compare two distinct methods for compositional data analysis.
(A separate paper (Brehm, Gates, and Gomez 1998) elaborates on our model of subordinate officers’ time

budgets, and our estimates of one such approach to compositional data).



2 Two Methods for Compositional Data Analysis

The two methods that we consider here are based upon fundamentally different probability processes (and,
hence, different densities). The first method, application of the Dirichlet distribution, is a multivariate gen-
eralization of the beta distribution, and offers considerable flexibility, is rapidly estimated with conventional
statistical software, but requires a strong form of an “independence of irrelevant alternatives” assumption.
The second method, transformation of the composites into log-ratios and estimation via seemingly-unrelated
regression-like analysis, offers less flexibility, is estimated less rapidly than the Dirichlet, does not require
the strong ITA assumption, but cannot handle strong forms of independence (Rayens and Srinivasan 1994).

We discuss the details of each method in turn.
2.1 Dirichlet

One relatively simple solution begins from an assumption that each composite is produced by an independent
process. Suppose that y;; is distributed as J independent gamma random variates with shape parameters
vi ...vy, where the y;; are distributed on the simplex. The composites are then distributed according to a

Dirichlet distribution:

(yl...yJ) = fD(}/i...YJ|V1...VJ) (3)
(o) T A
Hi:o, (Vk) k=1 g ( )

where
v >0,¥j=1...J (5)

One can reparameterize the v; in terms of explanatory variables and coefficients with simple exponentiation:

v; = exp(Xf3;), (6)

where the effect parameters (3;) vary by composite, and the X may or may not be the same set of explanatory
variables (identification for the system is accomplished through covariance restrictions, detailed below, and
through functional form). If one assumes that the observations are distributed identically and independently,

then the log-likelihood for the reparameterized Dirichlet is:

N

J J J
InL(B|X,y) = Z In, (Zexﬁf)—l-z:exﬁj lnyj—Zhl, (eXPi) | . (7)
j=1 j=1 j=1

i=1

This log-likelihood is easily optimized with a package such as Gauss.



Several features of the Dirichlet lend itself to some desirable properties for purposes of interpretation. The
Dirichlet is a multivariate generalization of the Beta distribution (which we use extensively in our analysis
of the allocation of time across two “tasks,” (working and shirking) in Brehm and Gates (1997)). As such, it
is a highly flexible distribution permitting multiple modes and asymmetry. Further, the moments are easily

found. Let v* = Ei:l vi. The mean of each composite j is

Vi

(8)

Hi = T

The variance of composite j is

v;(v* — )

V) = g

and the covariance of composites k£ and m is

—VgVUm

71 D) (10)

COV(yk, ym) =

Since all the v; are positive, this means that the covariance of any pair of composites k£ and m is negative,
or that any increase (decrease) in one composite necessitates a decrease (increase) in every other composite.
This property of the Dirichlet distribution is the first sign that there are hidden assumptions in the

Dirichlet that may warrant another selection of distributional assumptions. Aitchison (1986) writes

It is thus clear that every Dirichlet composition has a very strong implied independence
structure and so the Dirichlet class is unlikely to be of any great use for describing compositions
whose components have even weak forms of dependence. ... This independence property, which
holds for every partitition of every Dirichlet composition, is again extremely strong, and unlikely
to be possessed by many compositions in practice. For example, one implication of it is that each
ratio x;/x; of two components is independent of any other ratio z;/2; formed from two other
components.

What remains to be seen, however, is just how sensitive the analysis of composite data is to this particular
“strong” ITA (independence of irrelevant alternatives) assumption.

The irony is that the Dirichlet distribution, like the beta distribution, is capable of considerable variation
in potential distributions of allocation of the compositions. Figures 4-7 demonstrate simulated Dirichlet
distributions for varying selections of the parameters. It is possible to generate, among other forms, Dirichlet
which are uniformly dispersed (Figure 4), unimodal and centered (Figure 5), unimodel and off-centered

(Figure 6), or multimodal and skewed (Figure 7).
2.2 Additive Logistic

Aitchison and Shen (1980) and Aitchison (1986) offer an alternative to the Dirichlet. One relatively simple

method begins from an assumption that each composite is produced by an independent process. Suppose
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yij is distributed as J independent gamma random variates with shape parameters v, ...v;. Then the set of

composites y;;. Transform the y;; by the familiar log-ratio function relative to a baseline composite
v; =In(y;/ys),j=1...J -1 (11)

The v; are now unbounded. By virtue of this additive logistic transformation relative to the baseline (here,
vy), the v; are also unconstrained. The relation from the v; back towards the y; may be solved through the

additive logistic transformation

y; = exp(v;)/(exp(v1) + ... +exp(vs-1) + 1). (12)

If one assumes that the v; are distributed multivariate normally with mean p and covariance matrix 3,

then the probability for any distribution of v; is

Pr(vilp,2) = 2m) 32| |2|| 72 (v ... vg) (13)
X exp —1/2(111(1}1 ~NUy ~...~VUj_1 _M),E_l ln(’Ul ~NUy ~...~NVj_1 —p,)
vy vy

(where a ~ denotes a column-wise concatenation of the v;). Since the p are unbounded, a reparameterization

in terms of a linear combination of regressors is possible

where the X may again either be a set of identical regressors for each log-ratio (subject to identication
constraints on X), or a different set for each log-ratio. If one assumes that the observations are identically

and independently distributed, then the log-likelihood is

L(B,2|X,v) = =3/2ln(27) —1/2In(|E|) + In(viva...vy) (15)
—1/2(n(vy ~v2 ~ ... ~vg 1 fvg) —p) 7 (In(vy ~vg ~ .~ vgo[ug) — 1)

This is essentially a seemingly unrelated regression model (SURE), with the addition of the jacobian
(jac(v|y) = (y1 -+ -ys—1)~'. (This means that conventional SURE methods can be used to obtain exploratory
analyses, although standard error calculations will be incorrect without inclusion of the jacobian).

The advantages of this model, according to Aitchison, stem chiefly from the unconstrained properties
of the covariance structure of the log-ratio transformed v. The new model now permits any pattern of

dependence/independence among the time components y.



Our experience with estimation of this model has led us to discover that there are two non-trivial hin-
drances to application of this method. The first is that the method appears to be grossly sensitive to
identification concerns. While the Dirichlet achieves identification through a strict pattern of covariation
relationships and the form of the link functions, the generalized additive logistic normal must achieve identi-
fication through either exclusions in the log-ratio equations (X §;), or (paradoxically) through restrictions on
the covariance matrix (X), the very condition that induced us to consider something other than the Dirichlet.

The second is that there is no particular reason to assume that the log-ratio transformed compositions
(the v) should be distributed normally. Whereas the Dirichlet distribution proceeds from first principles of
independent gamma processes, it is not clear what first principals lead to a normal distribution of log-ratio
compositions. Indeed, Katz and King (1997) in their application of these methods to analysis of multi-party
elections in Britain conclude that the distribution of election results more closely patterns an additive logistic
t distribution, although that is also not derived from first principles. Barring development of appropriate
distributions based on first principles, the implementation of the additive logistic method requires an ad hoc

search for distributions based on fit.
3 Simulation Comparisons

Our approach in this paper is to use Monte Carlo simulations to gauge when application of either Dirichlet
or additive logistic methods would be inappropriate (i.e., result in misleading estimates for the overall
composites, or for the effect of covariates upon composites).

Why use Monte Carlo simulation methods to compare the two approaches for compositional data analysis?
For certain purposes — namely, to assess bias, consistency, or efficiency of the estimators, or the sensitivity
of those estimators to assumptions — it is always preferable to deductively produce closed form calculations
of these properties, over simulation techniques.

But it is not always possible to produce the closed form calculations. Mathematical abilities constitute
one such limit (and the limits of the present authors preclude closed solutions to a direct comparision). Some
problems, too, are precluded from deductive solutions because closed form solutions do not exist. In the
present case, we note that the first derivative of the gamma function is represented in most statistics texts
as a psi function without closed representation.

But there are more positive beneifts to simulation approaches. Provided one constructs reasonable facsim-

10



iles to real world problems, simulation approaches can yield more concretely comprehensible representations
of the boundaries of appropriate analysis than deductive approaches. Aitchison’s proofs, for example, hinge
on probability limit calculations. We have 1000 observations — are we close enough to the asymptote? at
this many observations, how much bias would we encounter? when are we most in jeopardy by the strong
ITA assumptions?

The keys for us are a) to devise facsimiles of plausible settings for compositional data analysis problems,
b) not to be satisfied with results that “work” (i.e., appear to be unbiased, with low error dispersion), but to
push the scenarios until we find those that “fail” (i.e., appear to be biased, to be sensitive to assumptions,
to leave unacceptably wide error dispersion).

We will generate composite distributions (for three composites, an obvious extension of the analysis is to

greater numbers of composites) based on the following variations:
e Covariates in common across all composites (u; = exp(X3;));
e Covariates unique to composites (u; = exp(X;3;))-

Generation of composites requires attention to the covariance between log-ratios (and, hence, components

y;). Begin by computing the mean of each log-ratio:
1= Boj + BijZrj + ... + BTy (16)

Generate U as a matrix of J — 1 normally distributed vectors of 1000 observations, each with mean p; and
variance of 1. Each of the columns of U is independent, but with correct mean and variance for the log-ratios.

If one multiplies U by the Cholesky decomposition of ¥, one can generate the correct log-ratios:
V = Uchol(%)'". (17)

We then convert back from the V' to y; by application of equation 12. Because ¥ must be positive definite
for the Cholesky decomposition to exist, we are constrained in our choice of appropriate matrices. We fix the
main diagonal to 1, and the off-diagonal to the range —1...+ 1. We begin the analysis to three composites,
although an obvious extension is to more than three, the choice of ¥ becomes more complex.

The first simulation begins by first drawing three regression parameters (8o, 51, 82) from a uniform
distribution (0,2), and a pair of covariates (z1,z2) from a uniform distribution (0,1). We then generate

the p; by taking exp(Bo + S1x15222). We then draw 1000 observations from a normal distribution with

11



mean p;. We then multiply the log-ratios by the Cholesky decomposition of X, drawn as described in the
preceeding paragraph. We then transform the now correlated log-ratios back to composites. This method
yields composites which vary from .2 to .8, with covariation between composites which varies from —.8 to .5.

The second simulation draws four regression parameters and three covariates from uniform distributions
(with the same bounds as the second simulation). We then generate the v; by taking exp(By + B;x;), that
is, allowing only one x to be associated with each composite.

For both of the simulations, we then estimate with both Dirichlet and additive logistic normal, repeating
for 1000 replications.

The coefficients across the Dirichlet and additive logistic normal methods are not directly comparable.
Not only are these on different scales of different functional forms, but we have three sets of coefficients for
the Dirichlet and two for the additive logistic normal. Instead, we estimate first differences, computed as the
change in the composite for each of the z;, with z; varying from the minimum (0) to maximum (1), holding

all the other z at the mean (.5).

4 Results

4.1 Common Covariates

In the first simulation, we let the parameters for the compositions be a function of three randomly selected
parameters (a constant plus two slope terms) and randomly selected X, all drawn from a uniform distribution,
with the X in common across all three composites. The idea in this simulation is to apply both Dirichlet
and additive logistic methods to estimate the effect of a unit change in each of the two X's on the composite
against the true effect.

Figure 8 presents the kernel density plots for the error in estimates of effects for both Dirichlet and
Additive Logistic methods (where the error is the true effect minus the estimated effect). The upper half of
the plots contain the Dirichlet estimates, and are noted with a (D); the lower half of the plots contain the
additive logistic estimates, and are noted with a (A). Plainly, the error in estimates of effects is quite small,
on average about zero, approximately normally distributed and approximately the same for both Dirichlet
and Additive Logistic approaches.

In figure 9, we plot the estimated effect against the true effect, with a line drawn at 45 degrees to denote

equality. As is implicit from the previous graph, the points are clustered about the 45 degree line. There is
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Figure 9: Estimate vs. True Effect on Composites, Common Covariates Simulation

slight evidence of bias to the Dirichlet estimates, in that the cluster veers from the 45 degree line as the true
effect veers toward the extremes.

We can directly identify what accounts for greater divergence from the true effects. Figure 10 presents
the error in estimated effects plotted against the correlation between the log-ratios. As the log-ratios become
more strongly correlated, the dispersion of the error in estimated effects increases. But the problem holds
for both the additive logistic and Dirichlet approaches, and appears to be as likely to be an overestimate as
an underestimate of effects.

In brief, then, when the composites are influenced by common covariates, there appears to be no advantage

in use of the additive logistic methods over the Dirichlet.
4.2 Unique Covariates

The second simulation employed in this paper is to assign composites by unique covariates. We draw

two random coefficients (a constant plus one slope term) and three random Xs. The parameters for the
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Figure 11: Error in Estimates of Effects on Composites, Unique Covariates Simulation (Kernel Density Plots)

random draws of composites are a function of an X unique to that parameter (i.e., X1 for composite 1,
X2 for composite 2, and X3 for composite 3). The intuition to be tested here is that any problems in
mis-estimating effects should be most obvious when composites are highly correlated.

Turn first to the kernel density plots of the error in estimates of the first differences for both the Dirichlet
and additive logistic estimates (figure 11). As before, the Dirichlet estimates are in the upper half of the
figure and marked with a (D), while the additive logistic estimates are in the lower half of the figure and
marked with an (A).

The intuition we have is that the estimates for the effect of covariates that are associated with each
composite should be reasonably accurate, but that the estimates for the effect of other covariates may
be erroneous (and, further, more biased as the covariation between the composite in question and the
composite uniquely associated with the covariate increases). In other words, we expect low variance on the
X1 — C1,X2 - (C2, and X3 — (3 effect estimates (call these the “on target” covariates), and wider

variance otherwise (“off target”).
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Figure 12: Estimate vs. True Effect on Composites, Unique Covariates Simulation

The actual results are somewhat surprising. The “on target” estimates are quite close to the true
estimates: the mode is essentially zero, and the dispersion quite narrow. This holds for both the Dirichlet and
additive logistic forms. The “off target” estimates are all over the map. The majority of the estimates exhibit
very small levels of bias (noted by the difference of the mode from zero), with narrower error dispersion in
the additive logistic form as in the Dirichlet. But there are three cases where the kernel density plots suggest
severe problems: the Dirichlet estimates of the effects of X2 on C3, and the additive logistic estimates of the
effects of X1 and X2 on C'3. We do not have any particular reason to offer for the difficulties in estimating
(3, although this is the composite which is determined by the other two for the additive logistic case (i.e.,
as 1/(1+ exp(XB1) + exp(XB2))).

The next set of plots provide more complete clues as to the nature of bias in the simulated estimates
(figure 12). Again, we would like to see the estimated effects clustered close to the diagonal marking equality.
Here, the Dirichlet approach fares substantially poorer than the additive logistic. The “on target” estimates

for the Dirichlet are symmetrically arranged around the diagonal, although they are widely dispersed for the
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Figure 13: Error in Estimates of Effects on Composites vs. Covariance of Log-Ratio of Composites, Unique
Covariates Simulation

effect of X3 — C3. The key here is that only two of the “off target” estimates exhibit the same pattern of
symmetrical arrangement around the diagonal (X1 — C3,X2 — C1), while the remainder are quite off the
mark.

The additive logistic estimates, by contrast, appear to be much closer to the mark. The “on target”
estimates are all close to the diagonal, symmetrically distributed. Only two of the “off target” estimates are
seriously off the mark.

The final set of plots (figure 13) explore the relationship between the error in estimates for both methods
as a function of the correlation between the log-ratios. As before, ideally, the graph should be flat and fairly
evenly concentrated around zero. When the dispersion increases as the correlation increases, this is evidence
of increased sensitivity to the correlation between log-ratios of composites.

Lke the equivalent graphs for the common covariates simulation, the plots of error against the correlation

in log-ratios imply increasing sensitivity to the correlation between log-ratios. All but one of the Dirichlet
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estimates demonstrate general sensitivity to the correlation in log-ratios. The remaining plot (for X2 — C3)
is far off the mark, with a frankly odd pattern. And again, the additive logistic estimates appear to be
equally sensitive to the correlation in log-ratios. One of the estimates (X2 — C3) is extremely off the mark,
with another frankly bizarre pattern.

Are the odd patterns (for both the Dirichlet and additive logistic effects) more comprehensible when
framed as errors against the correlations of the composites themselves? Nope. We have explored the plots
of the error against the correlation between the composites themselves. There is, however, only a weak
relationship between the correlations of composites and effects seen. As the covariation for composites 1 and
2 increases, the estimate of the effect of X1 — C3 becomes more biased, but no others, for both Dirichlet
and additive logistic approaches. As the covariation between composites 1 and 3 increases, the Dirichlet
estimates of X1 — C3 and the additive logistic estimates of X1, X2 — (3 become more biased, but no
others.

In short, the additive logistic and Dirichlet methods appear to be approximately equally successful at
estimating the effects of the unique covariates on the composites: they are generally on target, with low,
and symmetric error distributions. There are a few odd cases where estimates fall far from the mark, but
there is no obvious advantage to either method. More so, both methods become more error-prone as the
correlation between the log-ratios increases — exactly the evidence of the ITA assumption. Although the
additive logistic method purports to handle strong conditions of dependence between ratios of composites,

in these simulations, it fairs no better than the Dirichlet.

5 Conclusion

So, what to make of the comparisons between the methods? Recall the goal of our simulations: to devise
situations in which the Dirichlet method should be likely to fail, while the additive logistic method should
be likely to succeed.

We failed at failing.

Unfortunately, with simulation results, that is not the same as succeeding. Perhaps we did not devise the
right scenarios to demonstrate the failings of Dirichlet methods, or the strengths of additive logistic. Perhaps
with a greater number of composites, a more complex pattern of intercorrelations among composites, or

nonlinear functional forms for the effects of variables upon composites we would see more stark evidence of
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the strengths of one approach versus the other.

The problemof biased estimates surfaces most obviously in the condition where each composite is deter-
mined by unique covariates. In our present substantive interest, we should be wary of interpreting effects
for conditions where time to particular tasks (e.g., meals, paperwork) is determined by highly task-specific
variables.

We do, however, see clear strengths for the Dirichlet approach within the quite narrow bounds of these
simulations. The Dirichlet approach is significantly faster than additive logistic. Total estimation per
replication (on average, on a Pentium Pro 180 running Gauss under Linux) required 60.7 seconds for the
Dirichlet estimates and 221.3 for the additive logistic estimates for the unique covariates simulation, for these
extremely simple models. Our experience in estimating the two sets of models for the police data is that
these differences add up to hours of advantages in favor of the Dirichlet. Hours of improved speed mean
more model testing, more model variation, more specification approaches, and thus better science.

The Dirichlet distribution is considerably more flexible than the additive logistic. One method of demon-
strating results is to produce simulations of plausible values. The additive logistic estimates, in our experience
with the police data, produce overestimates of the dispersion of police performance — substantively quite
important, since convergence among officers is partial evidence for intersubordinate influence. The Dirichlet
estimates, on the other hand, generated much more accurate pictures of their performance (see figures 14
and 15).

These are simulation results, and provisional evidence. Others (Rayens and Srinivasan 1994) claim that
another distribution (the Liouville) can capture the extreme virtues of both methods. (It is, however, subject
to some dispute as to whether the density integrates within legitimate probability bounds). Our evidence
suggests that there is no particular advantage to additive logistic methods over Dirichlet. Our experience

suggests that the methods yield rich opportunities for research into interesting political problems.
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Figure 14: Simulated Distribution of Police Time Figure 15: Simulated Distribution of Police Time
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21



6 References

Aitchison, J. 1986. The Statistical Analysis of Compositional Data New York: John Wiley.

Aitchison, J. and S. M. Shen. 1980. “Logistic-normal Distributions: Some Properties and Uses,”
Biometrika 67: 261-72.

Brehm, John, Scott Gates, and Brad Gomez. 1998. “Donut Shops, Speed Traps, and Paperwork:
Supervision and the Allocation of Time to Bureaucratic Tasks.” Paper presented at the 1998 Public
Choice Society Annual Meeting and the 1998 Midwest Political Science Association Annual Meeting.

Brehm, John and Scott Gates. 1997. Working, Shirking, and Sabotage: Bureaucratic Response to a
Democratic Public. Ann Arbor: University of Michigan Press.

Gupta, Rameshwar D. and Donald St. P. Richards. 1987. “Multivariate Liouville Distributions,” Journal
of Multivariate Analysis 23: 233-56.

Katz, Jonathan and Gary King. 1997. “A Statistical Model of Multiparty Electoral Data,” Paper
presented at the annual meetings of the Midwest Political Science Association, Chicago, April.

Ostrom, Elinor, Roger B. Parks, and Gordon Whittaker. 1988. Police Services Study, Phase II, 1977:
Rochester, St. Louis, and St. Petersburg. ICPSR 8605.

Padgett, John F. 1981. “Hierarchy and Ecological Control in Federal Budgetary Decision Making.”
American Journal of Sociology 87(1): 75-129.

Rayens, William S. and Cidambi Srinivasan. 1994. “Dependence Properties of Generalized Liouville
Distributions on the Simplex,” Journal of the American Statistical Association 89: 1465-70.

Sivazlian, B. D. 1981. “A Class of Multivariate Distributions,” Australian Journal of Statistics 23, 2:
251-5.

22



