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Summary. The singular value decomposition and its interpretation as a linear biplot have proved
to be a powerful tool for analysing many forms of multivariate data. Here we adapt biplot meth-
odology to the specific case of compositional data consisting of positive vectors each of which
is constrained to have unit sum. These relative variation biplots have properties relating to the
special features of compositional data: the study of ratios, subcompositions and models of
compositional relationships. The methodology is applied to a data set consisting of six-part col-
our compositions in 22 abstract paintings, showing how the singular value decomposition can
achieve an accurate biplot of the colour ratios and how possible models interrelating the colours
can be diagnosed.

Keywords: Log-ratio transformation; Principal component analysis; Relative variation biplot;
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1. Introduction

Compositional data (Aitchison, 1986) consist of vectors of positive values summing to a unit,
or in general to some fixed constant for all vectors. Such data arise in many disciplines, e.g. in
geology as major oxide compositions of rocks, in sociology and psychology as time budgets, i.e.
parts of a time period allocated to various activities, in politics as proportions of the electorate
voting for different political parties and in genetics as frequencies of genetic groups within pop-
ulations. The biplot (Gabriel, 1971) is a method which has been regularly applied to visualize
the rows and columns of many different kinds of data matrices. In almost all cases, the original
data values require transforming to depict correctly the structures that are appropriate to the
particular nature of the data. Compositional data are also special in this respect and a careful
consideration of the relationships between parts of a composition is required before we embark
on applying biplot methodology to such data.
We consider the data of Table 1, showing six-part colour compositions in 22 paintings cre-

ated for teaching purposes. Each painting was divided into a number of rectangles, in the
style of a Mondrian abstract painting, and the rectangles were each coloured in one of six
colours: black, white, blue, red, yellow and one further colour, labelled ‘other’, which varies
from painting to painting. The data are the proportions of surface area occupied by the six
colours. For example, the first painting has 12.5% of the area in black, 24.3% in white, and
so on. One of the questions that was posed to the students was to orientate the pictures in
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Table 1. Colour composition data for 22 abstract paintings

Painting Proportions of area occupied by the following colours:

Black White Blue Red Yellow Other

1 0.125 0.243 0.153 0.031 0.181 0.266
2 0.143 0.224 0.111 0.051 0.159 0.313
3 0.147 0.231 0.058 0.129 0.133 0.303
4 0.164 0.209 0.120 0.047 0.178 0.282
5 0.197 0.151 0.132 0.033 0.188 0.299
6 0.157 0.256 0.072 0.116 0.153 0.246
7 0.153 0.232 0.101 0.062 0.170 0.282
8 0.115 0.249 0.176 0.025 0.176 0.259
9 0.178 0.167 0.048 0.143 0.118 0.347

10 0.164 0.183 0.158 0.027 0.186 0.281
11 0.175 0.211 0.070 0.104 0.157 0.283
12 0.168 0.192 0.120 0.044 0.171 0.305
13 0.155 0.251 0.091 0.085 0.161 0.257
14 0.126 0.273 0.045 0.156 0.131 0.269
15 0.199 0.170 0.080 0.076 0.158 0.318
16 0.163 0.196 0.107 0.054 0.144 0.335
17 0.136 0.185 0.162 0.020 0.193 0.304
18 0.184 0.152 0.110 0.039 0.165 0.350
19 0.169 0.207 0.111 0.057 0.156 0.300
20 0.146 0.240 0.141 0.038 0.184 0.250
21 0.200 0.172 0.059 0.120 0.136 0.313
22 0.135 0.225 0.217 0.019 0.187 0.217

the same way as the artist. The results of this experiment showed that successful orientation
followed a binomial distribution with success probability 1

4 , a result that was in fact replicated
with real Mondrian paintings. Another question was to have the students estimate the propor-
tions of each colour, both to illustrate variability of estimation of proportions and the nature
of compositional variability. Our present interest in these data, however, is to see whether any
pattern is discernible in the construction of these paintings. There is considerable variation
from painting to painting in their colour compositions and the challenge is to describe the
patterns of variability appropriately in simple terms while maintaining the unit sum constraint
that is inherent in the data. An important aspect is how to treat so-called subcompositions;
for example if the analysis is restricted to the three primary colours then the results should
be consistent with those obtained for these three colours when analysing the full composi-
tion.
In Section 2 we define the linear biplot and briefly summarize some known results which

will be relevant to its application to compositional data. In Section 3 we discuss what makes
compositional data different from interval- or ratio-scaled measurements and how to trans-
form such data to perform what we call a relative variation biplot. In Section 4 we apply the
relative variation biplot to the colour composition data and discuss issues of interpretation and
modelling. Section 5 concludes with a discussion and comparison with methods such as regular
principal component analysis and correspondence analysis. The data that are analysed in the
paper can be obtained from

http://www.blackwellpublishers.co.uk/rss/
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2. Biplots

A biplot is a graphical display of the rows and columns of a rectangular n × p data matrix
X, where the rows are often individuals or other sample units and the columns are variables.
In almost all applications, biplot analysis starts with performing some transformation on X,
depending on the nature of the data, to obtain a transformed matrix Z which is the matrix that
is actually displayed. Examples of transformations are centring with respect to the overall mean,
centring with respect to variable means, normalization of variables, square root and logarithmic
transforms.
Suppose that the transformed data matrix Z has rank r. Then Z can be factorized as the

product

Z = FGT; .1/

where F is n × r and G is p × r. The rows of F and the rows of G provide the co-ordinates of
n points for the rows and p points for the columns in an r-dimensional Euclidean space, called
the full space since it has as many dimensions as the rank of Z. This joint plot of the two sets
of points can be referred to as the exact biplot in the full space. There are an infinite number of
ways to choose F and G, and certain choices favour the display of the rows; others the display
of the columns. For any particular choice, however, the biplot in r dimensions has the property
that the scalar product between the ith row point and jth column point with respect to the origin
is equal to the .i; j/th element zij of Z.

We are mainly interested in low dimensional biplots of Z, especially in two dimensions, and
these can be conveniently achieved by using the singular value decomposition (SVD) of Z:

Z = UΓVT; .2/

where U and V are the matrices of left and right singular vectors, each with r orthonormal
columns, and Γ is the diagonal matrix of positive singular values in decreasing order of magni-
tude: γ1 � . . . � γr > 0. The Eckart–Young theorem (Eckart and Young, 1936) states that if
one calculates the n× p matrix Ẑ using the first rÅ singular values and corresponding singular
vectors, e.g. for rÅ = 2,

Ẑ = . u1 u2 /
(

γ1 0
0 γ2

)
. v1 v2 /T .3/

then Ẑ is the least squares rank rÅ matrix approximation of Z, i.e. Ẑ minimizes the fit criterion

‖Z − Y‖2 = ∑
i

∑
j

.zij − yij/2

over all possiblematricesY of rank rÅ, where ‖. . . ‖ denotes the Frobeniusmatrix norm. It is this
approximate matrix Ẑ which is biplotted in the lower rÅ-dimensional space, called the reduced
space. This biplot will be as accurate as is the approximation of Ẑ to Z. The sum of squares of
Z decomposes into two parts: ‖Z‖2 = ‖Ẑ‖2 + ‖Z − Ẑ‖2, where ‖Ẑ‖2 = γ2

1 + . . . + γ2
rÅ , and

‖Z− Ẑ‖2 = γ2
rÅ+1 + . . . +γ2

r and the goodness of fit is measured by the proportion of explained
sum of squares .γ2

1 + . . . + γ2
rÅ/=.γ

2
1 + . . . + γ2

r /, usually expressed as a percentage.
The SVD also provides a decomposition which is a natural choice for the biplot. For example,

from equation (3) in two dimensions. Ẑ = FGT with

F = . γα
1 u1 γα

2 u2 / ;

G = . γ1−α
1 v1 γ1−α

2 v2 /
.4/
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for some constant α. The most common choices of α are the values 1 or 0, when the singular
values are assigned entirely either to the left singular vectors of U or to the right singular vectors
of V respectively, or 0.5 when the square roots of the singular values are split equally between
left and right singular vectors. Each choice, while giving exactly the samematrix approximation,
will highlight a different aspect of the data matrix. The term principal co-ordinates refers to the
singular vectors scaled by the singular values (e.g. F with α = 1 or G with α = 0), whereas
standard co-ordinates are the unscaled singular vectors (Greenacre, 1984).
The most common biplot is of an individuals-by-variables data matrix X that has been trans-

formed by centring with respect to column means x̄j:

zij = xij − x̄j: .5/

Optionally, if normalization of the variables is required, there can be a further division of
each column of the matrix by sj, the estimated standard deviation of the jth variable: zij =
.xij − x̄j/=sj.
After calculating the SVD of Z, the co-ordinate matrices F and G are calculated as in equa-

tions (4) by using either

(a) α = 1, i.e. rows in principal co-ordinates and columns in standard co-ordinates, called
the form biplot, which favours the display of the individuals (see below), or

(b) α = 0, i.e. rows in standard co-ordinates and columns in principal co-ordinates, called the
covariance biplot, which favours the display of the variables (Greenacre and Underhill,
1982).

The alternative solutions differ only by scale changes along the horizontal and vertical axes of
the biplot (see Figs 2 and 3 in Section 4). In either biplot we conventionally depict the variables
by rays emanating from the origin, since both their lengths and directions are important to the
interpretation.
The covariance biplot is characterized by the least squares approximation of the covariance

matrix S = ZTZ=.n−1/ by GGT=.n−1/, the matrix of scalar products between the row vectors
of G=

√
.n− 1/. Thus, apart from the constant

√
.n− 1/, the lengths of the rays will approxi-

mate the standard deviations of the respective variables and angles between rayswill have cosines
which estimate the intervariable correlations. Distances between row points in the full space are
measured in the Mahalanobis metric, using the inverse covariance matrix S−1. Geometrically
this means that row points have been ‘sphered’ to have the same variance in all directions.
In the form biplot, it is the formmatrix ZZT, or matrix of scalar products between the rows of

Z, that is approximated optimally by the corresponding form matrix FFT of F. Thus the scalar
products and squared norms (lengths) of the row vectors in the full space are approximated
optimally in the reduced space biplot, whereas now the rays corresponding to the variables have
been sphered.
Apart from the rules of interpretation of biplots, discussed further by Gabriel (1971, 1981),

Greenacre and Underhill (1982) and Gower and Hand (1996), there are also the lesser known
issues of calibration, approximation of differences and modelling that are particularly relevant
to our study of compositional biplots.

2.1. Calibration of biplots
The oblique axis through a ray is called the biplot axis of the corresponding variable. Each zij is
approximated by the scalar product between a row point and a column point in the biplot, and
this scalar product is equal to the projection of the row point onto the biplot axis, multiplied by
the length of the ray. It follows that the inverse of the length of the ray gives the length of a unit
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along the biplot axis. For example, if the length of ray A is equal to 5, according to the scale of
the display, then 1=5 = 0:2 will be the length of 1 unit along this axis, so that two individuals
projecting at a distance of 0.2 apart on this axis are predicted to be 0:2 × 5 = 1 unit apart on
variable A. Knowledge of

(a) this unit length,
(b) the positive direction of the scale as indicated by the ray and
(c) the fact that the mean is at the centre of the display

allows us to calibrate the biplot axis in units of the original variable. For examples of calibration,
see Gabriel and Odoroff (1990), Greenacre (1993) and Gower and Hand (1996).

2.2. Difference axes
Any linear combination of rays in the biplot defines a vector which represents the corresponding
linear combination of the variables (Gabriel, 1978). In particular, the difference between two
variables can be indicated by the vector connecting the end points, or apexes, of the two corre-
sponding rays (Fig. 1). These difference vectors are called links. Thus, the difference between
variablesA andB is shown by the broken link in Fig. 1. Because the link points towards variable
A, the difference represented is variable A minus variable B.
Like the biplot axes through rays, axes can be defined through links defining difference axes.

Row points can then be projected onto a difference axis to obtain approximations of those
differences for the individuals. The point of average difference on a difference axis is given by
the projection of the origin onto this axis. In the covariance biplot the rays are optimal least
squares representations of the corresponding full space columns, but in general the links are
not necessarily optimal approximations of the true difference vectors. Differences will be accu-
rately represented and predicted when the fit is high, of course, but when it is low differences
are often represented much better with respect to other dimensions of the variable space which
are optimal for displaying these differences themselves. For a discussion of this topic and an
explicit analysis of differences, see Greenacre (2001).
Contrary to the general situation described above, however, the relative variation biplot

Fig. 1. Biplot axes through rays and links: �, rows (individuals); !, columns (variables)
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which we shall define in Section 3 for compositional data will be shown to fit both the variables
and their differences optimally, and the percentage of variance explained will be the same in
each case.

2.3. Diagnosis of simple models
Bradu and Gabriel (1978) gave guidelines for diagnosing simple models from straight line pat-
terns formed by subsets of row and/or column points in a two-dimensional biplot, assuming
that the biplot gives an excellent fit to the data (see also Gabriel (1981)). For example, if in a
biplot we observe that a subset I of row points lies approximately in a straight line, and a subset
J of column points also lies in a straight line which is perpendicular to the line of row points,
then the submatrix formed by the rows I and columns J can be diagnosed to follow closely the
simple additive model zij = µ + αi + βj. When these straight lines are not perpendicular, a
slightly more general model is indicated, and even more general still when just one set of points,
say the column points, falls on a straight line. The beauty of such diagnostics is that it is easier
to notice groups of points lining up in a biplot than to undertake a study of all submatrices of
the data.

3. Compositional data

By the very nature of the initial centring transformation (5), the biplots described above apply
to interval–scale variables, since the results are invariant with respect to additive changes in the
variables. If the data were ratio–scale measurements, i.e. if multiplicative differences were im-
portant in the comparison of individuals, then the data should be logarithmically transformed
before centring. We now consider compositional data and the transformations which can be
considered suitable to bring them onto an interval scale for biplotting.
A compositional data matrix X has columns corresponding to the parts, or components,

of a p-part composition. A typical row vector of this matrix is .x1 . . . xp/ with positive com-
ponents subject to the unit sum constraint x1 + . . . + xp = 1. Although standard statistical
methodology, such as the calculation of covariances and correlations, is commonly applied to
compositional data, there is an extensive literature on the pitfalls of such a practice (see, for
example, Aitchison (1986), chapter 3). Of particular importance in the study of compositional
data is the concept of a subcomposition, and the requirement that any form of analysis should
have what is called subcompositional coherence. This is best considered in terms of two scientists
A and B, with A able to record all the p parts of a composition and so to arrive at the full
composition .x1 . . . xp/, whereas B is aware of, or can record, only some parts, say 1; . . . ; pÅ,
hence arriving at the subcomposition

.s1 . . . spÅ/ = .x1 . . . xpÅ/=.x1 + . . . + xpÅ/: .6/

Subcompositional coherence requires that any inference which scientist Amakes about the sub-
compositional parts 1; . . . ; pÅ from knowledge of the full composition should coincide with
the corresponding inference made about these parts by scientist B from the subcomposition.
Regular product–moment correlations and principal component analysis, based on covariances
calculated on the raw compositional data, do not have subcompositional coherence (Aitchison
(1986), section 3.3).
Recognition that the study of compositions is concerned with relative and not absolute mag-

nitudes of the components has led to considering ratios of the components. From equation (6)
ratios are clearly invariant under the formation of subcompositions: sj=sj′ = xj=xj′ . Note that
these are ratios within the compositional data vector, i.e. across the columns of the data matrix.
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When it comes to calculating scalar products and covariances for the biplot it is necessary to
consider on what scale these ratios themselves are, when compared across individuals. Here we
maintain that the ratios themselves are on a ratio scale. Hence it is appropriate to take loga-
rithms of the ratios, called log-ratios, and to consider differences between these log-ratios from
individual to individual. Several justifications for the log-ratio transformation may be found in
Aitchison (1986, 2001). At first this might seem unduly complicated but differences in log-ratios
are already commonplace in the calculation of the log-odds in the log-linearmodel of categorical
data and in logistic regression.
Aitchison (1986) showed that there are three equivalent ways of considering ratios within a

compositional vector:

(a) the 1
2p.p − 1/ ratios xj=xj′ between pairs of components (we assume that j < j′ when

selecting the pair),
(b) the p− 1 ratios xj=xp between the first p− 1 components and the last and
(c) the p ratios xj=g.x/ between the components and their geometric average g.x/ =

.x1x2. . . xp/1=p.

On the logarithmic scale these are the respective differences

(a) log.xj/− log.xj′/,
(b) log.xj/− log.xp/ and
(c) the deviations from the mean log.xj/− .1=p/Σj log.xj/.

The second option is the least interesting in the present context, because it is not symmetric with
respect to all the components, and we do not discuss it further. We shall be primarily interested
in the study of pairwise log-ratios log.xj=xj′/ = log.xj/− log.xj′/, but we shall need to refer to
the centred log-ratios log{xj=g.x/} as well.
Suppose that we denote the logarithms log.xij/ of the compositional data matrix by lij and

collect them in a matrix L .n × p/. Suppose that the dot subscripts in li·, l·j and l·· denote the
averages over the corresponding indices, so that the pairwise log-ratios are lij − lij′ and the
centred log-ratios are lij − li·. Let T be the n × 1

2p.p − 1/ matrix of pairwise log-ratios with
general element τi;jj′ = lij − lij′ , j < j′. Although our interest is chiefly in the matrix T of
pairwise log-ratios, we shall now show that it is possible to obtain all the results about T by
using the smaller matrix of the centred log-ratios which has only p columns.
If we were to make a biplot of the larger matrix T, we would centre T with respect to col-

umn means τ·jj′ = l·j − l·j′ , as in equation (5), to obtain a matrix Y: yi;jj′ = τi;jj′ − τ·jj′ =
lij − l·j − .lij′ − l·j′/. Suppose that Y has SVD Y = AΨBT, where B has 1

2p.p− 1/ rows repre-
senting each log-ratio .jj′/ as a ray emanating from the origin. Notice that the corresponding
‘inverse’ log-ratio .j′j/ would be the ray of the same length emanating from the origin and
pointing in the opposite direction. T has 1

2p.p − 1/ columns, but we show below that its rank
is equal to p− 1; hence it has 1

2 .p− 1/.p− 2/ columns that are effectively redundant.
Now let Z be the n×pmatrix of (row-)centred log-ratios lij− li· which have been centred with

respect to column means z·j = l·j − l··, i.e. Z is the matrix of elements of L which are double
centred: zij = lij − li· − l·j + l··. Let Z have SVD Z = UΓVT. Since Z is double centred, its
singular vectors in U and V are all centred, and the rank of Z is equal to p− 1.
The SVDs of Y and of Z are directly related in the following way (see Appendix A for a proof

of these results).

(a) The singular values of the two SVDs are related by a constant scaling factor: Ψ =
Γ

√
p.

(b) The left singular vectors are identical: A = U.



382 J. Aitchison and M. Greenacre

(c) The right singular vectors B of Y are proportional to the corresponding differences in the
row vectors of V; specifically bjj′;k = .vjk − vj′k/=

√
p.

This result means that we need only to perform the analysis of the smaller matrix Z, from
which all the results for the larger matrix Y can be obtained. We call the biplot of Z the relative
variation biplot because it represents variation in all the component ratios. Important geometric
consequences come from the equivalence of the SVDs of Y and Z. Most importantly, in the
biplot of Z all the links from rays j to j′ representing pairwise log-ratios (j < j′) can be trans-
ferred to the origin to obtain the solution which would have been obtained from the biplot of
Y. This means that looking for straight line patterns in the biplot can be widened to include
links which are parallel. Furthermore, the pairwise log-ratios are optimally displayed and with
the same percentage explained variance as the display of the centred log-ratios.

4. Results

Figs 2 and 3 show the relative variation biplots of the data in Table 1: first the form biplot and
second the covariance biplot. In the covariance biplot of Fig. 3 the column points have been
rescaled by the constant 1=

√
.n− 1/ = 1=

√
21 to bring the column solution onto the scale of

log-ratio variance and covariance.
We collect below the properties of these relative variation biplots.

4.1. Property 1
The row points and column points are both centred at the origin of the display. This is a direct
consequence of the double-centring transformation of the matrix. Thus the average row point
in the display is at the origin and the average column point as well.

4.2. Property 2
In the form biplot, where rows are displayed in principal co-ordinates, distances between row
points are approximations of the distances between the individuals, calculated either from the
matrix of pairwise log-ratios or equivalently from the matrix of centred log-ratios:

Fig. 2. Relative variation biplot of the colour composition data, preserving distances between rows (form
biplot)



Biplots 383

Fig. 3. Relative variation biplot of the colour composition data, preserving covariance structure between
log-ratios (covariance biplot)

d2ii′ = 1
p

∑ ∑
j<j′

{
log

(
xij

xij′

)
− log

(
xi′j
xi′j′

)}2

= ∑
j

[
log

{
xij

g.xi/

}
− log

{
xi′j

g.xi′/

}2 ]
: .7/

The dispersion of the points along the horizontal and vertical principal axes is quantified by the
corresponding eigenvalues and percentages of the sum of squares explained: 90.0% and 8.2%
respectively in this application, giving an excellent overall fit of 98.2%.

4.3. Property 3
In the covariance biplot, distances between column points are approximations of the standard
deviation of the corresponding log-ratio. For example, the largest link between red and blue
indicates that there is the most relative variation in these two colours across the paintings. The
exact standard deviations of all log-ratios are given in the upper triangle of thematrix in Table 2,
whereas those estimated from the link lengths in the biplot are in the lower triangle.
For example, the exact standard deviation of the log-ratio involving black and white is equal

to 0.308 whereas the displayed link has length 0.302. The estimated values are always less than
the exact values, since the approximation is ‘from below’: the link lengths in the full five-
dimensional space are exactly the standard deviations but are shorter when projected onto
the reduced space of the biplot. The accuracy of recovery of the standard deviations is again
reflected in the percentage of variance explained, namely 98.2%.

4.4. Property 4
Angle cosines between links in the covariance biplot estimate correlations between log-ratios.
Thus the fact that the links between blue, yellow and red lie perpendicularly to the links between
white, other and black indicates that log-ratios among the first set have near zero correla-
tions with those among the second set. To support this claim, we show in Table 3 the relevant
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Table 2. Standard deviations of log-ratios

Colour Standard deviations for the following colours:

black white blue red yellow other

black 0 0.308 0.504 0.616 0.225 0.130
white 0.302 0 0.466 0.645 0.221 0.270
blue 0.501 0.463 0 1.071 0.315 0.488
red 0.616 0.646 1.071 0 0.767 0.628
yellow 0.218 0.214 0.305 0.767 0 0.213
other 0.041 0.262 0.476 0.621 0.184 0

Table 3. Subset of the correlation matrix between log-ratios

Colour ratio Correlation for the following colour ratios:

red/yellow red/blue yellow/blue white/other other/black white/black

red/yellow 1.000 0.996 0.949 −0:048 −0:095 −0:082
red/blue 0.996 1.000 0.974 −0:074 −0.108 −0.110
yellow/blue 0.949 0.974 1.000 −0.133 −0.138 −0.175
white/other −0:048 −0:074 −0:133 1.000 0.069 0.907
other/black −0:095 −0:108 −0:138 0.069 1.000 0.482
white/black −0:082 −0:110 −0:175 0.907 0.482 1.000

subset of the correlation matrix between log-ratios, showing that the two sets can be considered
independent of each other:

4.5. Property 5
In either biplot column points lying in a straight line reveal log-ratios of high correlation, and a
model summarizing this interdependence can be deduced from the relative lengths of their links.
By inspection in Figs 2 and 3, the distance from red to yellow is roughly 2.5 times the distance
from yellow to blue. Since all links can be transferred to the origin, it follows that

log.red=yellow/− ave{log.red=yellow/} = 2:5[log.yellow=blue/− ave{log.yellow=blue/}]
where ave.·/ indicates the mean of the corresponding log-ratio across individuals. This reduces
to the constant log-contrast

2:5 log.blue/+ log.red/− 3:5 log.yellow/ = constant

where the constant is estimated by averaging the log-contrast over individuals. This diagnoses
a proportionality relationship between the colours as

red=yellow ∝ .yellow=blue/2:5:
Fig. 4(a) demonstrates this proportionality relationshipwhereas Fig. 4(b) shows the relationship
in triangular co-ordinates between the three primary colours for the three-part subcomposition,
showing an excellent fit to the data. Interestingly, this representation of primary colours as
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Fig. 4. (a) Relationship between colour ratios red/yellow and (yellow/blue)2:5, showing the proportionality
relationship, and (b) Goethe’s colour triangle, showing mixtures of primary colours in 22 paintings, and
the model diagnosed by the relative variation biplot red/yellow / (yellow/blue)2:5

vertices of a triangle is due to Goethe (1810) and is the earliest reference, to our knowledge, to
the triangular co-ordinate system. The same system was used independently 50 years later by
Maxwell (1860) to explain his own colour theory in terms of red, green and blue.
In general, if three components A, B and C lie in an approximate straight line with distan-

ces AB and BC equal to λ and µ respectively, then the constant log-contrast is of the form
µ log.A/+ λ log.C/− .λ + µ/ log.B/ = constant, i.e. .A=B/µ ∝ .B=C/λ.

4.6. Property 6
In either biplot four column points A; B; C and D forming a parallelogram reveal a simple
constant log-contrast of the form

log.A/− log.B/+ log.C/− log.D/ = constant:

In Figs 2 and 3 the colours black, red, white and blue lie approximately on a parallelogram. We
can transfer the links black–red and blue–white to the origin and thus obtain the relationship

log.black/red/− ave{log.black/red/} = log.blue/white/− ave{log.blue/white/}
leading to the constant log-contrast

log.black/− log.red/+ log.white/− log.blue/ = constant

and thus the proportionality relationship black/red ∝ blue/white or equivalently black/blue ∝
red/ white. This relationship can be demonstrated by plotting the ratio of any two adjacent
colours in the parallelogram against the ratio of the other two. Fig. 5 shows black/red against
blue/white and the relationship is strongly linear through the origin, as diagnosed successfully
by the parallelogram in the biplot.

4.7. Property 7
If a subset I of the individuals (rows) and a subset J of the components (columns) lie approxi-
mately on respective straight lines that are orthogonal, then the compositional submatrix formed
by the rows I and columns J has approximately constant log-ratios among the components, i.e.
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Fig. 5. Relationship between the colour ratios black/red and blue/white, showing the proportionality rela-
tionship

the double-centred submatrix of log(compositions) has near-zero entries. For example in both
biplots it is possible to see a group of three row points in the lower left quadrant (rows 9, 21
and 15) which are in a straight line that is orthogonal to the line defined by the three column
points white–other–black. The relevant data from Table 1 are shown in Table 4 along with the
corresponding ratios.
This property of log-ratio constancy in submatrices of the data can be deduced directly from

the additive model mentioned in Section 2.3 or from the concept of biplot calibration, described
by the next property.

4.8. Property 8
Either biplot can be calibrated in log-ratio units or in ratio units. Calibration of the rays will
apply to centred log-ratios, whereas calibration of the links will apply to pairwise log-ratios. For
example, in the form biplot of Fig. 2, the length of the blue–red link is calculated as 1.372. Thus
1 unit on the biplot axis through this link has a length of 1=1:372 = 0:7290. The mean value of
log(blue/red) is calculated from the data to be 0.6153 which is the value corresponding to the
origin of the display projected onto this link axis. So to calibrate this axis in tenths (0.1) of a
log-ratio unit, for example, we must put tick marks on the axis at a distance of 0.0729 apart, so
that the scale increases towards the right (since we are calibrating the blue − red difference) and
has the value 0.6153 at the point where the origin projects onto the axis. Equivalently, we can
transfer the link to the origin, in which case the origin will correspond to the average log-ratio.
The calculations needed to position the tick marks for a biplot axis through a link or a ray are
given in Appendix B.

Table 4. Colour composition data and corresponding ratios

Painting black white other black/white other/white other/black

9 0.178 0.167 0.347 1.07 2.08 1.95
15 0.199 0.170 0.318 1.17 1.88 1.60
21 0.200 0.172 0.313 1.16 1.82 1.65
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Fig. 6. Log-ratio form biplot of the colour composition data, showing calibration of the ratios blue/red and
white/black on a logarithmic scale

It is also possible to calibrate either biplot directly in units of ratios. Using the log-ratio
scale previously established, tick marks for appropriately rounded values on a ratio scale are
determined (see the example in Appendix B). The tick marks will be on a logarithmic scale for
each calibrated axis. Fig. 6 shows the form biplot calibrated in ratio units, for the colour ratios
blue/red and white/black as examples. As an example, in Fig. 6 painting 8 is estimated to have
twice as much white as black, and seven times as much blue as red, which is confirmed by the
original data.
Calibration gives the biplot a concrete interpretation in terms of the original data and pro-

vides a new meaning to some of the properties already stated. For example, property 7 is now
obvious since any points lying on a line perpendicular to a link project onto the same value on
its biplot axis and thus have constant estimated values of the corresponding ratios.

4.9. Property 9
The whole compositional data matrix can be reconstructed approximately from either biplot,
but we need to know the means of the centred log-ratios as well as the geometric means of the
rows to be able to ‘uncentre’ the estimates obtained from the biplot. For this estimation we cali-
brate each ray representing the centred log-ratio of a column (a colour in our example). For this
calibration we need to know the average centred log-ratio to be able to anchor the scale at the
origin. Then the projection of each row i (a painting) onto each colour axis j gives an estimate
of the centred log-ratio log{xij=g.xi/}, and with knowledge of the geometric mean g.xi/ of the
row we can uncentre the estimate to arrive at the estimate of xij itself. The reconstructed data
from either of the two-dimensional biplots are given in Table 5 and are very close to the original
data, thanks to the 98.2% explained variance in the biplot.
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Table 5. Reconstructed compositional data from the two-dimensional
calibrated biplot (compare with the original data in Table 1)

Painting Proportions of area occupied by the following colours:

Black White Blue Red Yellow Other

1 0.131 0.245 0.156 0.031 0.182 0.254
2 0.154 0.225 0.113 0.052 0.170 0.287
3 0.155 0.232 0.059 0.131 0.137 0.285
4 0.160 0.210 0.119 0.046 0.172 0.293
5 0.187 0.152 0.132 0.032 0.173 0.324
6 0.144 0.257 0.069 0.111 0.145 0.272
7 0.153 0.233 0.102 0.062 0.165 0.285
8 0.122 0.250 0.176 0.025 0.186 0.240
9 0.189 0.168 0.048 0.145 0.127 0.324

10 0.160 0.183 0.158 0.027 0.182 0.290
11 0.167 0.212 0.070 0.102 0.146 0.302
12 0.169 0.192 0.120 0.044 0.172 0.304
13 0.146 0.253 0.087 0.081 0.157 0.276
14 0.133 0.269 0.050 0.167 0.128 0.254
15 0.192 0.170 0.080 0.075 0.152 0.332
16 0.172 0.195 0.104 0.055 0.166 0.309
17 0.150 0.185 0.180 0.021 0.187 0.277
18 0.193 0.152 0.115 0.040 0.167 0.332
19 0.166 0.206 0.105 0.056 0.166 0.301
20 0.139 0.239 0.140 0.038 0.179 0.265
21 0.190 0.171 0.057 0.117 0.136 0.328
22 0.123 0.224 0.205 0.018 0.190 0.239

5. Discussion

The present approach is based on a certain choice of prerequisites which a method of com-
positional data analysis should reasonably be expected to satisfy. Most importantly, the unit
sum constraint—or equivalently the fact that all compositional data vectors occupy a simplex
space—should be respected throughout the analysis, and all results should have subcompo-
sitional coherence. It is clear from the above aspects of interpretation that the fundamental
elements of a relative variation biplot are the links, rather than the rays as in the usual case
of biplots. The complete set of links, specifying the relative variances, determines the composi-
tional covariance structure and provides direct information about subcompositional variability
and independence.
The relative variation biplot implies a certain metric, or distance function, between sample

points i and i′. As we have seen in Sections 3 and 4, the squared distance can be defined either
in terms of all 1

2p.p − 1/ (pairwise) log-ratios, or—more parsimoniously—in terms of the p
centred log-ratios; see equation (7). This metric satisfies the property that the distance between
any two compositions must be at least as great as the distance between any corresponding sub-
compositions of the compositions. For an account of how to determine an appropriate metric
for compositional vectors, see Aitchison (1992). A study of the drawbacks of other metrics in
the simplex space was reported by Martín-Fernández et al. (1998).
Attempts have been made, e.g. by Miesch et al. (1966), David et al. (1974) and Teil and

Cheminée (1975), to explore compositional variability through the use of SVDs based on the
raw or standardized compositional data. These approaches do not recognize specifically the
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compositional nature of the data and do not have the property of subcompositional coherence.
A reconstruction of compositional vectors by using biplots based on correspondence analysis
(see Benzécri (1973) and Greenacre (1984, 1993)) can sometimes lead to estimated components
that are negative and hence outside the simplex.
As far as identifying relationships between the components xj of a composition is concerned,

straight or parallel line patterns in the relative variation biplot indicate a particular class of
models that can be written as a constant log-contrast:∑

j

aj log.xj/ = constant;

where Σj aj = 0. Constant log-contrast relationships are important in many disciplines; for
example the Hardy–Weinberg equilibrium in population genetics (Hardy, 1908) is a constant
log-contrast in gene frequencies, and various equilibrium equations in geochemistry also reduce
to constant log-contrasts (Krauskopf, 1979); see also Aitchison (1999) for further discussion of
log-contrast laws. It can be argued that constant log-contrasts do not cover all compositional
relationships of possible interest, but this is no different from the situation with the regular
biplot in which only a certain class of models can be diagnosed from straight line patterns in
the display.
The biplot is a natural consequence of the SVDof amatrix. To use standard SVD technology,

defined on conventional multidimensional vector spaces, the compositional data are log-trans-
formed and then double centred to ensure that component ratios are analysed on a ratio scale.
Even though the initial log-transformation takes the data out of the simplex into unconstrained
real vector space, the compositional nature of the data vectors is respected throughout the anal-
ysis. Aitchison (2001) showed that the same methodology can be described equivalently by an
SVD which is defined directly in terms of compositions in the constrained simplex space. The
simplex is established as a vector space in its own right by using compositional group operators
of addition and scalar multiplication. The addition operation in this ‘stay in the simplex’, or
simplicial, approach is called perturbation, denoted by ⊕, and scalar multiplication is called
powering, denoted by ⊗. Without going into details about these operations, we can use them to
reconstruct the ith row xi of the compositional data matrix in the following way, analogous to
principal component analysis:

xi = ξ ⊕ .s1ui1 ⊗ β1/⊕ . . . ⊕ .sruir ⊗ βr/

where ξ is the compositional centre of the data set, the sk are positive ‘singular values’, the βks
are the ‘right singular vectors’ which form a compositional basis in the simplex, thus providing
the ‘principal axes’ of the data compositions, and skuik are the ‘principal co-ordinates’ with
respect to the simplicial basis. For our colour data, the first two simplicial basis vectors turn out
to be

β1 = .0:156 0:149 0:085 0:333 0:125 0:153/T;

β2 = .0:088 0:312 0:170 0:173 0:155 0:103/T:

The way to interpret these compositional basis vectors is—as before— to look at ratios between
their components. Thus the constancy of the black, white and other values (first, second and
sixth) in β1 shows that this subcomposition is stable in the first simplicial ‘dimension’, whereas
the constancy of blue, red and yellow (third, fourth and fifth values) in β2 shows a similar
stability of this subcomposition in the second dimension.
Finally, we have been using the classical form of the biplot, now often referred to as the linear

biplot since the definition of non-linear biplots by Gower and Harding (1988). In non-linear
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biplots the biplot axes are replaced by curved trajectories and can also be calibrated. This richer
but more complex biplot can possibly identify a wider class of relationships in compositional
data, but its potential still needs to be fully explored.
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Appendix A: Equivalence of log-ratio and centred log-ratio biplots

Here we prove the result that is stated in Section 3. Suppose that we collect the logarithms lij ≡ log.xij/ of
the compositional data in the matrix L .n × p/. Then the matrix of all log-ratios log.xij=xij′/ = lij − lij′
(for j < j′) is equal to LEp, where Ep is the p × 1

2p.p − 1/ differencing matrix with 0s in each column
except for a 1 and −1 in two rows. The matrix of centred log-ratios log{xij=.xi1. . . xip/1=p} is equal to LCp,
where Cp is the p×p idempotent centring matrix I − .1=p/11T. Examples of the differencing and centring
matrices are, for p = 4,

E4 =




1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1


; C4 =




3
4 − 1

4 − 1
4 − 1

4

− 1
4

3
4 − 1

4 − 1
4

− 1
4 − 1

4
3
4 − 1

4

− 1
4 − 1

4 − 1
4

3
4


:

Consider the matrix LCp of centred log-ratios first. A biplot of this matrix as described in Section 2
would centre with respect to column means as in equation (5), i.e. premultiply by Cn, Z = CnLCp, and
then proceed as before with the SVD as in equation (2). The matrix Z is thus the double-centred matrix of
log(compositions), with elements zij = lij − li· − l·j + l·· where the dot subscript indicates averaging over
the corresponding index. Suppose that Z has SVD Z = UΓVT. The fact that Z is double centred implies
that the elements of each singular vector in U and V are centred: CnU = U and CpV = V.
Consider now the matrix LEp of pairwise log-ratios. This matrix, again centred with respect to column

means, gives Y = CnLEp and leads to a biplot which depicts the individuals and each .j; j′/ ratio pair
(j < j′). Suppose that Y has SVD Y = AΨBT, where B has 1

2p.p− 1/ rows.
These two biplots are directly related through the SVDs as follows. Firstly, the form matrices of Z and

Y are identical, apart from an overall scale factor,

ZZT = CnLCpCpLTCn = CnLCpLTCn = UΓ2UT;

YYT = CnLEpET
pLTCn = pCnLCpLTCn = U.pΓ2/UT

since EpET
p = pCp. Thus the singular values differ by a constant scale factor of

√
p, Ψ = Γ

√
p, and the

left singular vectors are identical in the two SVDs, A = U. In contrast, the scalar products of the columns,
which provide the covariances in the two biplots, have the following connection:

ZTZ = CpLTCnLCp = VΓ2VT:

Premultiplying and postmultiplying by ET
p and Ep respectively and using the fact that the columns of Ep

are centred, CpEp = Ep, we obtain
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YTY = ET
pLTCnCnLEp = .ET

pV/Γ2.ET
pV/T;

i.e. the right singular vectors of B are proportional to the corresponding differences between rows of V.
Since .ET

pV/T.ET
pV/ = VTEpET

pV = VT.pCp/V = pVTV = pI it follows that B = ET
pV=

√
p and we verify

again that Ψ = Γ
√
p.

With the above notation it is easy to show that, in general, a matrix Y (column centred or not) has form
matrix YYT, whereas the form matrix of its column differences YEp is pYCpYT. Thus the form matrices
agree (up to the scale value p) if Y is row centred, but also if Y has constant row sums since row centring
would then just involve subtracting a constant from everymatrix element. Thus a regular principal compo-
nent analysis of amatrix of compositional data also has the property that links are optimal representations
of the column differences.

Appendix B: Linear biplot calibration

Suppose that we want to calibrate the biplot axis which passes through two column points A and B, with
given co-ordinates .a1; a2/ and .b1; b2/ on the first two dimensions of the biplot. Denote the projection of
the origin of the biplot onto the biplot axis by the point .o1; o2/. Suppose that the mean difference in the
values of B − A (calculated from the data) is equal to m.
Now the squared distance from A to B is equal to d2 = .b1 − a1/2 + .b2 − a2/2 and the length of 1 unit

on the biplot axis is thus s = 1=d. By simple trigonometry, the co-ordinates .o1; o2/ are equal to

o1 = a1.b2 − a2/2 − a2.b1 − a1/.b2 − a2/
d2

;

o2 = a2.b1 − a1/2 − a1.b1 − a1/.b2 − a2/
d2

and the tick mark for value t has co-ordinates .t1; t2/:

t1 = o1 + s.t −m/.b1 − a1/
d

= o1 + .t −m/.b1 − a1/
d2

;

t2 = o2 + s.t −m/.b2 − a2/
d

= o2 + .t −m/.b2 − a2/
d2

:

As an example, for the blue–red link in the form biplot of Fig. 6, the co-ordinate values are the stan-
dard co-ordinates of the apexes of the red and blue points respectively: .a1; a2/ = .−0:7839; 0:1201/ and
.b1; b2/ = .0:5878; 0:1042/, and the mean value of log(blue/red), m, equals 0.6153. The link distance is
equal to 1.372 and the unit distance on the biplot axis is thus 1=1:372 = 0:7290. The origin projected onto
the biplot axis, corresponding to the mean value, has co-ordinates .o1; o2/ = .0:0013; 0:1110/ and the tick
mark for the log-ratio value of 1.1, for example, has co-ordinates

t1 = 0:0013 + .1:1 − 0:6153/.0:5878 + 0:7839/=1:3722 = 0:3545;

t2 = 0:1110 + .1:1 − 0:6153/.0:1042 − 0:1201/=1:3722 = 0:1069:

These formulae can be used to calibrate a ray as well by taking the pointA as the origin and thus setting
.a1; a2/ = .0; 0/.

The calibration described above applies to the biplot axes in log-ratio units. To calibrate directly in
ratio units, as in Fig. 6, the value of each tick mark on the ratio scale is first transformed by the natural
logarithm and then the above procedure is followed. For example, to place the tick mark for the ratio 5.0
on the blue–red axis, i.e. five times as much blue as red, we calculate log.5:0/ = 1:609 and then proceed
as before, substituting 1.609 for 1.1 in the above calculations to obtain co-ordinates of the tick mark as
.t1; t2/ = .0:7260; 0:1026/.
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