
Vector Differential Calculus in Statistics
M. P. WAND

Many statistical operations benefit from differential calculus.
Examples include optimization of likelihood functions and cal-
culation of information matrices. For multiparameter models
differential calculus suited to vector argument functions is usu-
ally the most efficient means of performing the required calcu-
lations. We present a primer on vector differential calculus and
demonstrate its application to statistics through several worked
examples.
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1. INTRODUCTION

Matrix notation is an indispensable tool in statistics. In par-
ticular, the storage of model parameters in a vector allows for
economical expression of models that relate the parameters to
the data. Functions used for estimation of the parameter vector,
such as likelihood functions and posterior densities, are also con-
veniently expressed using matrix notation. But when it comes
to optimization of these functions through differential calculus
the statistician usually reverts to scalar subscript notation and
applies ordinary univariate calculus to the entries of the param-
eter vector. Subsequent calculus steps, such as those required
to obtain the information matrix, are also usually done with
an element-wise approach—sometimes followed by conversion
back to matrix notation.

This article demonstrates that it is often possible to perform
the entire operation using matrix algebra. Apart from being more
streamlined, it saves conversion between matrix notation and
subscript notation. The key is a differential calculus suited to
vector argument and scalar-valued functions.

The book by Magnus and Neudecker (1988) describes an
elegant approach to differential calculus in statistics for gen-
eral matrix-argument functions. However, the simplifications
that arise for scalar-valued vector-argument functions are some-
what opaque in that reference. This article aims to redress
this deficiency, while otherwise using the tools of Magnus and
Neudecker. Other contributions to matrix differential calcu-
lus may be found in Dwyer (1967), Searle (1982), Basilevsky
(1983), and Harville (1997) but each of these references have
similar shortcomings for vector-argument functions.

Section 2 begins with a simple illustrative example. Section
3 presents the fundamentals of vector differential calculus, and
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Section 4 illustrates their use in statistics. Section 5 describes an
extension of the methodology to matrix arguments.

2. SIMPLE ILLUSTRATIVE EXAMPLE

Let (xi, yi), 1 ≤ i ≤ n, be a set of measurements on two
variables x and y, and consider the problem of fitting a line y =
β0 + β1 x to the data. The homoscedastic Gaussian regression
model is

y = Xβ + ε, ε ∼ N(0, σ2I),

where

y =

 y1
...
yn

 , X =

 1 x1
...

...
1 xn

 and β =
[
β0
β1

]
.

For σ2 known, the log-likelihood for estimation of β is (up to
an additive constant)


(β) = − 1
2σ2 (y − Xβ)�(y − Xβ). (1)

The scalar differential calculus approach to maximization of

(β) involves rewriting (1) as


(β) = − 1
2σ2

n∑
i=1

(yi − β0 − β1 xi)2

and then obtaining

∂�(βββ)
∂β0

= (1/σ2)
∑n
i=1(yi − β0 − β1 xi),

∂�(βββ)
∂β1

= (1/σ2)
∑n
i=1 xi(yi − β0 − β1 xi).

(2)

Setting this to zero we obtain the unique stationary point of 
(β)
occurring at

β̂0 = y − β̂1x

β̂1 =
n∑
i=1

(xi − x)(yi − y)
/ n∑
i=1

(xi − x)2.

As is well-known, (2) is algebraically equivalent to

β̂ = (X�X)−1X�y. (3)

The Hessian matrix of second-order partial derivatives is ∂2�(βββ)
∂β2

0

∂2�(βββ)
∂β0∂β1

∂2�(βββ)
∂β0∂β1

∂2�(βββ)
∂β2

1


= −(1/σ2)

[
n

∑n
i=1 xi∑n

i=1 xi
∑n
i=1 x

2
i

]
= −(1/σ2)X�X

which can be shown to be negative definite. Therefore β̂ =
[β̂0 β̂1]� as defined in (2) is the maximizer of 
(β) and returns
the least squares line. The information matrix of β is

I(β) = −E{−(1/σ2)X�X} = (1/σ2)X�X
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so the covariance matrix of β̂ is

I(β)−1 = σ2(X�X)−1.

Vector differential calculus achieves the same result more di-
rectly:


(β) = − 1
2σ2 (y − Xβ)�(y − Xβ)

=⇒ d 
(β) = − 1
2σ2 [{d (y − Xβ)}�(y − Xβ)

+(y − Xβ)�{d (y − Xβ)}]

= − 1
2σ2 [−(X dβ)�(y − Xβ)

−(y − Xβ)�Xdβ]
= (1/σ2)(y − Xβ)�X dβ

=⇒ D
(β) = (1/σ2)(y − Xβ)�X = 0

iff (y − Xβ)�X = 0

=⇒ β = (X�X)−1X�y.

Also,

d2 
(β) = (dβ)�
(

− 1
σ2 X�X

)
(dβ)

so

H 
(β) = − 1
σ2 X�X =⇒ I(β)−1 = σ2(X�X)−1.

The symbols “D 
(β)” and “H 
(β)” may be unfamiliar to
some readers, and even “dβ” may require clarification. The lat-
ter is a vector of differentials, analogous to the numerator and
denominator of dy/dx. In vector differential calculus these dif-
ferentials are often vectors, so cannot be divided according to the
usual rules of algebra. The D and H notation is used throughout
Magnus and Neudecker (1988) and, for scalar-valued functions
of vectors, is defined by the following

Definitions: Let f be a scalar-valued function with argument
x ∈ R

p. The derivative vector of f , Df(x), is the 1 × p vector
whose ith entry is

∂f(x)
∂xi

The Hessian matrix of f is

H f(x) = D{Df(x)�}
and is, alternatively, the p× p matrix with (i, j) entry equal to

∂2f(x)
∂xi∂xj

.

Many of our examples are concerned with score and informa-
tion calculations. If the data vector y has density f(y;β) then
the score vector and information matrices are, respectively,

Dθθθ log f(y;θ) and I(β) ≡ −E{Hθθθ log f(y;θ)}.
Note the necessity of a subscript on the D and H in this instance
to specify the argument of log f(y;θ) being differentiated. We

use such subscript notation liberally in the examples of Section
4.

3. A PRIMER ON VECTOR DIFFERENTIAL
CALCULUS

Consider x ∈ R and the function

y = x3 sinx.

Then scalar differential calculus leads to

dy

dx
=

(
d

dx
x3

)
sin x+ x3

(
d

dx
sin x

)
= 3x2 sinx+ x3 cosx.

An alternative piece of calculus is

dy = d(x3 sinx)
= (dx3) sin x+ x3(d sin x)
= (3x2 dx) sin x+ x3(cosx dx)
= (3x2 sinx+ x3 cosx)dx.

Hence

dy

dx
= 3x2 sinx+ x3 cosx

as before. This second derivation has used the rules:

1. d(uv) = (du)v + u(dv)

2. du3 = 3u2 du

3. d sinu = cosu du.

Each of these rules seems reasonable given the product rule and
rules for differentiation of polynomials and trigonometric func-
tions. The only difference is that they do not involve division
by differentials such as du. In scalar differential calculus such
division is “allowable,” but in the vector world division is not
standard. Therefore, for vector differential calculus, it is more
appropriate to work with products and then compute the deriva-
tive vector using (Magnus and Neudecker 1988):

First Identification Theorem: If a is a 1 × p vector for which

d f(x) = a dx,

then

a = Df(x).

The Hessian matrix can be found from

Second Identification Theorem: If A is a p × p matrix for
which

d2 f(x) = (dx)�A dx,

then

A = Hf(x).
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It follows from these theorems that all that is required are
rules for expressing df(x) in the forms

a dx and (dx)�A dx.

3.1 Notation

For vectors

a =

 a1
...
ap

 and b =

 b1
...
bp


we will introduce the notation (used by modern programming
languages such as S-Plus and Matlab)

a � b =

 a1b1
...

apbp

 ,

a/b =

 a1/b1
...

ap/bp

 ,

and

s(a) =

 s(a1)
...

s(ap)

 .

where s : R → R is a scalar function. We will use 1 to denote a
vector of ones, with dimension clear from the context. Another
useful notation is

diag(a) =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · ap

 .

For a p× q matrix A we define vec(A) to be the pq × 1 vector
obtained by stacking the columns of A underneath each other,
in order from left to right.

If v is a random vector then we use E(v) to denote is expec-
tation and cov(v) to denote its covariance matrix.

3.2 Some Matrix Algebraic Rules

The following matrix algebraic relationships are useful in vec-
tor differential calculus. The first one is particularly crucial.

diag(a)b = a � b,

diag(a)1 = a,

tr(AB) = tr(BA),
tr(A�B) = vec(A)�vec(B).

3.3 Rules for Differentials

Let u and v be vector functions and U and V be matrix func-
tions. A will denote a constant matrix and s a scalar function.

3.3.1 Rules for Scalar Functions

duα = αuα−1 du,

d log u = u−1du,

deu = eudu.

3.3.2 Chain Rule

d{s(u)} = s′(u) � (du) = diag{s′(u)}du.
3.3.3 Rules Involving Linear Functions

d(AU) = AdU,

d(U + V) = dU + dV,

d diag(u) = diag(du),
dU� = (dU)�,

dvec U = vec(dU),
d(trU) = tr(dU),
d(EU) = E(dU).

3.3.4 Product and Quotient Rules

d(U � V) = (dU) � V + U � (dV),
d(UV) = (dU)V + U(dV),

d(u/v) =
(du) � v − u � (dv)

v � v
.

3.3.5 Rules for Determinant and Matrix Inverse

d|U| = |U|tr(U−1dU),
dU−1 = −U−1(dU)U−1.

Quadratic forms, particularly those involving symmetric ma-
trices, are very common in statistics, so the following results are
worth learning:

3.3.6 Rules Involving Quadratic Forms

du�Au = u�(A + A�)du,
du�Au = 2u�Adu, A symmetric.

4. EXAMPLES

4.1 Generalized Linear Models

Let y be a vector of responses and X be a corresponding de-
sign matrix. The one-parameter exponential family model, with
canonical link, is characterized by the joint density

f(y;β) = exp{y�(Xβ) − 1� b(Xβ) + 1�c(y)}

where β is the vector of coefficients (e.g., McCullagh and Nelder
1990). For example, b(x) = log(1 + ex) corresponds to binary
regression with a logit link function.

The log-likelihood of β is
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(β) = y�Xβ − 1� b(Xβ) + 1�c(y)

=⇒ d
(β) = y�X dβ − 1� d b(Xβ)
= y�X dβ − 1�diag{b′(Xβ)}d(Xβ)
= y�X dβ − b′(Xβ)�X dβ

= {y − b′(Xβ)}�Xdβ.

From the first identification theorem the score is

D 
(β) = {y − b′(Xβ)}�X.

The information matrix of β is obtained from

d2
(β) = d{y − b′(Xβ)}�X dβ

= −{diag{b′′(Xβ)}Xdβ}�X dβ

= (dβ)�X�[−diag{b′′(Xβ)}]X(dβ)

which leads to

H 
(β) = −X�diag{b′′(Xβ)}X
and the information matrix being

I(β) = −E{H 
(β)}
= X�diag{b′′(Xβ)}X = X�cov(y)X.

Therefore, the asymptotic covariance matrix of β̂ is

I(β)−1 = [X�diag{b′′(Xβ)}X]−1 = [X�cov(y)X]−1.

4.2 Kriging

Let (xi, yi) be a set of observations with xi ∈ R
d and yi ∈ R.

The simple kriging model for estimation of E(y|x0), x0 ∈ R
d,

is

yi = µ+ S(xi) + εi

where the random vectors

S =

 S(x1)
...

S(xn)

 and ε =

 ε1
...
εn


have the moment structure

E(S) = E(ε) = 0, cov(S) = C and cov(ε) = σ2I

(e.g., Cressie 1993). Kriging involves determination of the best
linear predictor, Ŝ(x0), of S(x0) in the sense that

E[{Ŝ(x0) − S(x0)}2]

is minimized among all linear combinations of the form

Ŝ(x0) = a�y + b.

The function to be minimized over a ∈ R
d and b ∈ R is then

C(a, b) = E[{a�y + b− S(x0)}2]
= (µ1�a + b)2 + a�(C + σ2I)a

−2c�
0 a + E{S(x0)2},

where

c0 = [cov{S(x0), S(x1)}, . . . cov{S(x0), S(xn)}]�.

Therefore

daC(a, b) = 2{(µ1�a + b)µ1� + a�(C + σ2I) − c�
0 }da

and

d2
aC(a, b) = 2(da)�(µ211� + C + σ2I)da

leading to

DaC(a, b) = 2{(µ1�a + b)µ1� + a�(C + σ2I) − c�
0 }, (4)

and

HaC(a, b) = 2(µ211� + C + σ2I) > 0 for all b ∈ R. (5)

Since

d

db
C(a, b) = 2(µ1�a + b),

and

d2

db2
C(a, b) = 2 > 0 for all a ∈ R

d

it follows from (4) and (5) that the unique minimizers of C(a, b)
are

b = −µ1�a

a = (C + σ2I)−1c0

and the best linear predictor of y at x0 is

µ+ c�
0 (C + σ2I)−1(y − µ1).

In practice, µ and σ2 are replaced by estimators µ̂ and σ̂2, and
C parameterized and estimated by Ĉ, leading to the kriging
formula

ŷ(x0) = µ̂+ c�
0 (C + σ̂2I)−1(y − µ̂1).

4.3 Variance Regression Models

The general Gaussian variance regression model is

y ∼ N(Xβ,Vθθθ)

whereVθθθ represents a parameterization of the covariance matrix
of y in terms of θ. An important special case is the Gaussian
mixed model

y = Xβ + Zu + ε

with the random effects vector u and the error ε having joint
distribution [

u
ε

]
∼ N

([
0
0

]
,

[
Gζζζ 0
0 Rτττ

])
for some parameterized matrices Gζζζ and Rτττ (e.g., Robinson
1991). In this instance

θ =
[

ζ
τ

]
and Vθθθ = ZGζζζZ� + Rτττ .
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The log-likelihood of (β,θ) is


(β,θ) = −1
2
{
log |Vθθθ| + (y − Xβ)�V−1

θθθ (y − Xβ)
}

−n

2
log(2π).

First,

dβββ
(β,θ) = −(y − Xβ)�V−1
θθθ d(y − Xβ)

= (y − Xβ)�V−1
θθθ Xdβ,

and

d2
βββ
(β,θ) = (−Xdβ)�V−1

θθθ Xdβ

= (dβ)�(−X�V−1
θθθ X)dβ

so, from the Second Identification Theorem,

Hβββ
(β,θ) = −X�V−1
θθθ X,

and the β block of I(β,θ) is

−E{Hβββ
(β,θ)} = X�V−1
θθθ X.

To see that the maximum likelihood estimates of β and θ are
asymptotically uncorrelated, we start with

dθθθ{dβββ
(β,θ)} = (y − Xβ)�(dV−1
θθθ X)dβ

and then note that

E[dθθθ{dβββ
(β,θ)}] = 0.

It follows that I(β,θ) is block-diagonal. It remains to find the
θ block:

dθθθ
(β,θ) = −1
2
|Vθθθ|−1d|Vθθθ|

−1
2
(y − Xβ)�dV−1

θθθ (y − Xβ)

= −1
2

tr{V−1
θθθ (dVθθθ)}

+
1
2
(y − Xβ)�V−1

θθθ (dVθθθ)V−1
θθθ (y − Xβ)

d2
θθθ
(β,θ)

=
1
2

tr{V−1
θθθ (dVθθθ)V−1

θθθ (dVθθθ)}

−1
2
(y − Xβ)�V−1

θθθ (dVθθθ)V−1
θθθ (dVθθθ)V−1

θθθ (y − Xβ)

−1
2
(y − Xβ)�V−1

θθθ (dVθθθ)V−1
θθθ (dVθθθ)V−1

θθθ (y − Xβ).

Hence,

−E{d2
θθθ
(β,θ)} = −1

2
tr{V−1

θθθ (dVθθθ)V−1
θθθ (dVθθθ)}

+tr{VθθθV−1
θθθ (dVθθθ)V−1

θθθ (dVθθθ)V−1
θθθ }

=
1
2

tr{V−1
θθθ (dVθθθ)V−1

θθθ (dVθθθ)} (6)

where the rule

E(u�Au) = (Eu)�A(Eu) + tr{cov(u)A}
has been used. It is tricky to write down an explicit expression for
the Hessian for general Vθθθ, but a common class of submodels
that allows for considerable simplification is

Vθθθ =
c∑
i=1

θiKi, θ = [θ1, . . . , θc]� (7)

for a set of n × n matrices K1, . . . ,Kc. For example, variance
components models (e.g. Searle, Casella, and McCulloch 1992)
have this structure. An alternative representation of (7) is

vec(Vθθθ) = Kθ, K = [vec(K1)| . . . |vec(Kc)].

Let ⊗ denote Kronecker product (see, e.g., Magnus and
Neudecker 1988, p. 27). From the matrix algebraic result

tr(ABCD) = vec(D)�(A ⊗ C�)vec(B�)

we arrive at, via the Second Identification Theorem,

Hθθθ 
(β,θ) = −1
2
K�(V−1

θθθ ⊗ V−1
θθθ )K

and the full information matrix being

I(β,θ) =
[

X�V−1
θθθ X 0

0 1
2K�(V−1

θθθ ⊗ V−1
θθθ )K

]
.

However, since V−1
θθθ ⊗ V−1

θθθ is an n2 × n2 matrix a preferable
expression for practical use is

I(β,θ) =
[

X�V−1
θθθ X 0

0 { 1
2 tr(V−1

θθθ KiV−1
θθθ Kj)}1≤i,j≤c

]
which follows from (6) and the fact that

d

dθi
Vθθθ = Ki, 1 ≤ i ≤ c.

This matches equation (38) on page 239 of Searle, McCulloch,
and Casella (1992).

4.4 Generalized Linear Mixed Models

Generalized linear mixed models extend generalized linear
models by allowing for the incorporation of random effects (e.g.,
McCulloch and Searle 2000). The exponential family model of
Section 4.1 can be extended by writing

f(y|u) = exp{y�(Xβ + Zu) − 1� b(Xβ + Zu) + 1�c(y)},
where the random effects vector u has density f(u;θ). Mostly
common, the random effects distribution is Gaussian:N(0,Gθθθ),
for some positive definite matrix Gθθθ parameterized by θ. In this
case, with q denoting the dimension of u,

f(u;θ) = (2π)−q/2|Gθθθ|−1/2 exp
(

−1
2

u�G−1
θθθ u

)
and the likelihood of (β,θ) is then

L(β,θ) = f(y;β,θ)

=
∫

Rq

f(y|u)f(u) du

= (2π)−q/2|Gθθθ|−1/2 exp{1�c(y)} J(β,θ)
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where

J(β,θ) =
∫

Rq

exp
{
y�(Xβ + Zu)

−1�b(Xβ + Zu) − 1
2
u�G−1

θθθ u
}
du.

The integral J(β,θ) is, in general, irreducible so approxima-
tion methods are required for maximum likelihood estimation.
The simplest is penalized quasi-likelihood (PQL) (Breslow and
Clayton 1993; Wolfinger and O’Connell 1993). Note that

J(β,θ) =
∫

Rq

exp{h(u)} du, (8)

where

h(u) = y�(Xβ + Zu) − 1� b(Xβ + Zu) − 1
2
u�G−1

θθθ u.

(9)

PQL is based on Laplace approximation of J(β,θ), which in-
volves the Taylor series approximation

h(u) � h(ũ) + Dh(ũ)(u − ũ) +
1
2
(u − ũ)�Hh(ũ)(u − ũ).

We therefore need expressions for Dh(u) and Hh(u). First

duh(u) = {y − b′(Xβ + Zu)}�Zdu − u�G−1
θθθ du

and so

Du h(u) = {y − b′(Xβ + Zu)}�Z − u�G−1
θθθ .

Second,

d2
uh(u) = −(du)�[Z�diag{b′′(Xβ + Zu)}Z + G−1

θθθ ](du)

which leads to

Hu h(u) = −Z�diag{b′′(Xβ + Zu)}Z − G−1
θθθ .

The resulting log-likelihood approximation is then


(β,θ) � y�(Xβ + Zũ) − 1� b(Xβ + Zũ) − 1
2
ũ�G−1

θθθ ũ

−1
2

log |I − GθθθZdiag{b′′(Xβ + Zũ)}Z�|.

However, for ease of fitting, PQL uses one final approxima-
tion, based on the argument that b′′(Xβ+Zũ) is relatively con-
stant as a function of β. This argument gives some justification
for its omission from the log-likelihood to yield


(β,θ) � y�(Xβ + Zũ) − 1� b(Xβ + Zũ) − 1
2
ũ�G−1

θθθ ũ.

The maximization of the right hand side of this expression can
be carried out using standard generalized linear model software.

4.5 t Distribution Regression

Lange, Little, and Taylor (1989) described robust statistical
modeling based on the t distribution. Here we concentrate on
the regression model

yi ∼ t((Xβ)i, ψ2, ν),

where t(µ, ψ2, ν) denotes the t distribution with density function

f(t;µ, ψ2, ν) ≡ ψ−1c(ν){1 + (t− µ)2/(νψ2)}−(ν+1)/2,

(10)

and c(ν) =
(
Γ
(
ν+1
2

))
/(

√
πΓ(ν/2)

√
ν). The log-likelihood is


(β, ψ2, ν) = n log{c(ν)/ψ}
−ν + 1

2
1� log{1 + (y − Xβ)2/(νψ2)}.

First, using the chain rule (Section 3.3.2) with s(u) = log{1 +
u2/(νψ2)},

dβββ 
(β, ψ2, ν) = (ν+1)
2 1�diag

{
2(y−X β)/(νψ2)

1+(y−X β)2/(νψ2)

}
Xdβ

=
ν + 1
νψ2

(
y − Xβ

1 + 1
νψ2 (y − Xβ)2

)�
Xdβ

and so using the chain rule again with s(u) = u/{1 +
u2/(νψ2)},

d2
βββ 
(β, ψ

2, ν)

= −(dβ)�X� ν + 1
νψ2 diag

[
1 − 1

νψ2 (y − Xβ)2

{1 + 1
νψ2 (y − Xβ)2}2

]
Xdβ.

It is easily shown that for T having density (10)

E

[
1 − 1

νψ2 (T − µ)2

{1 + 1
νψ2 (T − µ)2}2

]
=

ν

ν + 3
.

So the β block of the information matrix of (β, ψ2, ν) is

ν + 1
(ν + 3)ψ2 X�X

which agrees with the results derived in Lange, Little, and Taylor
(1989). Similar arguments can be used to establish the orthog-
onality of β and (ψ2, ν). The (ψ2, ν) block of the information
matrix can be obtained using scalar calculus.

4.6 Negative Binomial Regression

The negative binomial regression model (e.g., Lawless 1987)
is

f(yi;β, κ) =
Γ(yi + κ)

Γ(κ)Γ(yi + 1)

×
(

exp (Xβ)i
κ+ exp (Xβ)i

)yi
(

κ

κ+ exp (Xβ)i

)κ
The log-likelihood for independent data from this model is


(β, κ) = y�[Xβ − log{κ1 + exp(Xβ)}]
−κ1� log{κ1 + exp(Xβ)}
+nκ log(κ) + 1� log Γ(y + κ1) − n log Γ(κ).

Now, using the chain rule (Section 3.3.2) with s(u) = log(κ +
eu),

dβββ
(β, κ)

= y� (X − diag[exp(Xβ)/{κ1 + exp(Xβ)}]X) dβ
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−κ1�diag[exp(Xβ)/{κ1 + exp(Xβ)}]Xdβ

= κ

(
y − exp(Xβ)
κ1 + exp(Xβ)

)�
Xdβ

and so, using the chain rule with s(u) = (y − eu)/(κ+ eu),

d2
βββ
(β, κ) = κ

[
diag

{
−exp(Xβ) � (κ1 + y)

{κ1 + exp(Xβ)}2

}
X
]�

Xβ.

Therefore

−E{d2
βββ
(β, κ)}

= κ

{
diag

(
exp(Xβ)

κ1 + exp(Xβ)

)
Xdβ

}�
Xdβ

= (dβ)�X�diag

(
κ exp(Xβ)

κ1 + exp(Xβ)

)
Xdβ

so the β block of I(β, κ) is

X�diag

(
κ exp(Xβ)

κ1 + exp(Xβ)

)
X.

For the (β, κ) block

dκ{dβββ
(β, κ)}

=
{

(y − exp(Xβ)) � dκ

(
κ1

κ1 + exp(Xβ)

)}�
Xdβ

and so

−E[dκ{dβββ
(β, κ)}] = 0.

Using ordinary differential calculus we can establish

d2

dκ2 
(β, κ) =
n∑
i=1

{
trigamma(yi + κ) − 1

exp(Xβ)i + κ

}
+n{1/κ− trigamma(κ)}

so the information matrix for negative binomial regression is

I(β, κ) =


X�diag

(
κ exp(Xβββ)

κ1+exp(Xβββ)

)
X 0

0
∑n

i=1

[
1

κ+exp(Xβββ)i

−E{trigamma(yi + κ)}
]

+n{trigamma(κ) − 1/κ}

 .

This matches the results given in Lawless (1987).

5. EXTENSION TO MATRIX ARGUMENT
FUNCTIONS

In the case where the parameter of interest is a matrix rather
than a vector then the rules of Section 3 can be applied to the
vectorized version of the matrix parameter. We will give but one
illustration of this. Suppose that

x1, . . . ,xn iid N(µ,ΣΣΣ),

the p variate normal distribution. In this case ΣΣΣ is a general p×p
matrix. The log-likelihood for (µ,ΣΣΣ) is


(µ,ΣΣΣ) = −np

2
log(2π) − n

2
log |ΣΣΣ|

−1
2

n∑
i=1

(xi − µ)ΣΣΣ−1(xi − µ).

Ordinary vector differential calculus leads to

dµ
(µ,ΣΣΣ) =
n∑
i=1

(xi − µ)�ΣΣΣ−1dµ

from which it is easily established that

µ̂ = x ≡ 1
n

n∑
i=1

xi

is the maximizer of 
(µ,ΣΣΣ) for every ΣΣΣ. The maximum likeli-
hood estimate of ΣΣΣ then maximizes


(x,ΣΣΣ) =
−np

2
log(2π)

−n

2
log |ΣΣΣ| − 1

2

n∑
i=1

(xi − x)�ΣΣΣ−1(xi − x).

The calculus required for this minimization can be performed
using the results of Section 3, but with ΣΣΣ replaced by vec(ΣΣΣ):

dΣΣΣ
(x,ΣΣΣ) = −n

2
|ΣΣΣ|−1d|ΣΣΣ|

−1
2

n∑
i=1

(xi − x)�(dΣΣΣ−1)(xi − x)

= −n

2
tr(ΣΣΣ−1dΣΣΣ)

+
1
2

n∑
i=1

(xi − x)�ΣΣΣ−1(dΣΣΣ)ΣΣΣ−1(xi − x)

= −n

2
tr(ΣΣΣ−1dΣΣΣ)

+
1
2

n∑
i=1

tr{ΣΣΣ−1(xi − x)(xi − x)�ΣΣΣ−1(dΣΣΣ)}

= −n

2
vec(ΣΣΣ−1)�dvec(ΣΣΣ)

+
1
2

n∑
i=1

vec{ΣΣΣ−1(xi − x)

×(xi − x)�ΣΣΣ−1}�dvec(ΣΣΣ),

where we have used the result tr(A�B) = vec(A)�vec(B).
Therefore, the derivative vector of 
(x,ΣΣΣ) with respect to vec(ΣΣΣ)
is

D
(x,ΣΣΣ) = vec
[
−n

2
ΣΣΣ−1

+
1
2

n∑
i=1

{ΣΣΣ−1(xi − x)(xi − x)�ΣΣΣ−1}
]�

.

Clearly, this is zero if and only if

ΣΣΣ =
1
n

n∑
i=1

(xi − x)(xi − x)�

which is the sample covariance matrix with an n divisor.

[Received TKK. Revised TKK.]
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