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Purpose

• This Module was created to 
provide instruction and examples 
on sample size calculations for a 
variety of statistical tests on behalf 
of BERDC

• The software used is R a free, 
open-source package



Background

• The Biostatistics, Epidemiology, and 
Research Design Core (BERDC) is a 
component of the DaCCoTA program 

• Dakota Cancer Collaborative on 
Translational Activity has as its goal to 
bring together researchers and 
clinicians with diverse experience from 
across the region to develop unique and 
innovative means of combating cancer 
in North and South Dakota

• If you use this Module for research, 
please reference the DaCCoTA project



The Why of 
Sample Size 
Calculations

• In designing an experiment, a key question is:

How many animals/subjects do I need for my 
experiment?

• Too small of a sample size can under detect the 
effect of interest in your experiment

• Too large of a sample size may lead to 
unnecessary wasting of resources and animals 

• Like Goldilocks, we want our sample size to be 
‘just right’

• The answer: Sample Size Calculation

• Goal: We strive to have enough samples to 
reasonably detect an effect if it really is there 
without wasting limited resources on too many 
samples.

https://upload.wikimedia.org/wikipedia/commons/thumb/e/ef/The_Three_Bears_-
_Project_Gutenberg_eText_17034.jpg/1200px-The_Three_Bears_-_Project_Gutenberg_eText_17034.jpg



Key Bits of Sample Size Calculation
Effect size: magnitude of the effect under the 
alternative hypothesis

• The larger the effect size, the easier it is to detect an effect and require fewer 
samples

Power: probability of correctly rejecting the null 
hypothesis if it is false

• AKA, probability of detecting a true difference when it exists
• Power  = 1-β, where β is the probability of a Type II error (false negative)
• The higher the power, the more likely it is to detect an effect if it is present and 

the more samples needed
• Standard setting for power is 0.80

Significance level (α): probability of falsely rejecting the 
null hypothesis even though it is true 

• AKA, probability of a Type I error (false positive)
• The lower the significance level, the more likely it is to avoid a false positive and 

the more samples needed
• Standard setting for α is 0.05

• Given those three bits, and other information based 
on the specific design, you can calculate sample size 
for most statistical tests

https://images-na.ssl-images-amazon.com/images/I/61YIBfLPPuL._SX355_.jpg



Effect Size in detail
• While Power and Significance level are usually set 

irrespective of the data, the effect size is a property 
of the sample data

• It is essentially a function of the difference between 
the means of the null and alternative hypotheses 
over the variation (standard deviation) in the data 

How to estimate Effect Size:
A. Use background information in the form of preliminary/trial data 

to get means and variation, then calculate effect size directly

B. Use background information in the form of similar studies to get 
means and variation, then calculate effect size directly

C. With no prior information, make an estimated guess on the effect 
size expected, then use an effect size that corresponds to the size 
of the effect

• Broad effect sizes categories are small, medium, and large

• Different statistical tests will have different values of effect size for 
each category

𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒 ≈
𝑀𝑒𝑎𝑛𝐴 −𝑀𝑒𝑎𝑛0
𝑆𝑡𝑑. 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛



Effect Size Calculation within R
• As opposed to GPower, which allows you to enter details such as means and standard 

deviations into the program and it will calculate effect size for you, that is not the 
case for R

• Most R functions for sample size only allow you to enter effect size

• If you want to estimate effect size from background information, you’ll need to 
calculate it yourself first

• Throughout this Module, I will provide an equation to calculated effect size for each 
of the statistical tests

❖Disclaimer: Most of the examples and practice problems are the same as an earlier GPower
Module.  However, it was not always clear how effect size was calculated in GPower or in R, 
so sometimes the sample size calculated was different between the two.  When in doubt, I 
would go with the result that gives the higher sample size to avoid undersampling.



Statistical Rules of the Game

Here are a few pieces of terminology to refresh yourself with before embarking on calculating 
sample size: 

• Null Hypothesis (H0): default or ‘boring’ state; your statistical test is run to either Reject or Fail to Reject the Null

• Alternative Hypothesis (H1): alternative state; usually what your experiment is interested in retaining over the Null

• One Tailed Test: looking for a deviation from the H0 in only one direction (ex: Is variable X larger than 0?)

• Two-tailed Test: looking for a deviation from the H0 in either direction (ex: Is variable Y different from 0?)

• Parametric data: approximately fits a normal distribution; needed for many statistical tests

• Non-parametric data: does not fit a normal distribution; alternative and less powerful tests available

• Paired (dependent) data: categories are related to one another (often result of before/after situations)

• Un-paired (independent) data: categories are not related to one another

• Dependent Variable: Depends on other variables; the variable the experimenter cares about; also known as the Y or response variable

• Independent Variable: Does not depend on other variables; usually set by the experimenter; also known as the X or predictor variable



Using R: Basics
• This module assumes the user is familiar with R

• For an introduction or refresher, please check out the following material

• https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

• http://www.r-tutor.com/r-introduction

• https://www.statmethods.net/

• R can be downloaded here: https://cran.r-project.org/

• I strongly suggest also getting RStudio, an integrated development 
environment: https://rstudio.com/

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
http://www.r-tutor.com/r-introduction
https://www.statmethods.net/
https://cran.r-project.org/
https://rstudio.com/


Organization of tests

• As opposed to the earlier GPower Module, which organized tests 
taxonomically based on types of variables, this module will follow a 
different order

• The order will be based on the packages available in R

• We will start with basic statistical tests that are easily calculated

• For each test:
• Introduction slide: description, example, R code, and effect size calculation

• Result slide: shows R code and results for the example question

• Practice: 2-3 questions to practice on your own

• Answers: parameters, R-code, and resulting sample size for practice questions



# Name of Test in R? Package Function

1 One Mean T-test Yes pwr pwr.t.test

2 Two Means T-test Yes pwr pwr.t.test

3 Paired T-test Yes pwr pwr.t.test

4 One-way ANOVA Yes pwr pwr.anova.test

5 Single Proportion Test Yes pwr pwr.p.test

6 Two Proportions Test Yes pwr pwr.2p.test

7 Chi-Squared Test Yes pwr pwr.chisq.test

8 Simple Linear Regression Yes pwr pwr.f2.test

9 Multiple Linear Regression Yes pwr pwr.f2.test

10 Correlation Yes pwr pwr.r.test

11 One Mean Wilcoxon Test Yes* pwr pwer.t.test + 15%

12 Mann-Whitney Test Yes* pwr pwer.t.test + 15%

13 Paired Wilcoxon Test Yes* pwr pwer.t.test + 15%

14 Kruskal Wallace Test Yes* pwr pwr.anova.test + 15%

15 Repeated Measures ANOVA Yes WebPower wp.rmanova

16 Multi-way ANOVA (1 Category of interest) Yes WebPower wp.kanova

17 Multi-way ANOVA (>1 Category of interest) Yes WebPower wp.kanova

18 Non-Parametric Regression (Logistic) Yes WebPower wp.logistic

19 Non-Parametric Regression (Poisson) Yes WebPower wp.poisson

20 Multilevel modeling: CRT Yes WebPower wp.crt2arm/wp.crt3arm

21 Multilevel modeling: MRT Yes WebPower wp.mrt2arm/wp.mrt3arm

22 GLMM Yes^ Simr & lme4 n/a

*-parametric test with non-parametric correction
^-detailed in future Module



One Mean T-Test
Description: This tests if a sample mean is any different 
from a set value for a normally distributed variable.

Example: Is the average body temperature of college 
students any different from 98.6°F?

• H0=98.6°F,   H1≠98.6°F
• We will guess that the effect sizes will be medium
• For t-tests:

0.2=small, 0.5=medium, and 0.8 large effect sizes
• Selected Two-tailed, because we were asking if temp 

differed, not whether it was simply lower or higher

R Code: pwer -> pwr.t.test

pwr.t.test(d = , sig.level = , power = , type = c("two.sample", 
"one.sample", "paired"))

• d=effect size
• sig.level=significant level
• power=power of test
• type=type of testNumeric. 

Var(s)
Cat. Var(s) Cat. Var 

Group #
Cat Var. # of 

Interest
Parametric Paired

1 0 0 0 Yes N/A

Effect size calculation
• Cohen’s D = (M2-M1)/SD

• M2=Mean 2
• M1=Mean 1
• SD =Standard deviation



One Mean T-Test
Results:

> #sample number
> pwr.t.test(d=0.50, sig.level=0.05, power=0.80, type="one.sample", alternative="two.sided")

One-sample t test power calculation 

n = 33.36713
d = 0.5

sig.level = 0.05
power = 0.8

alternative = two.sided

→ Round up to 34



One Mean T-Test: Practice
Calculate the sample size for the following scenarios (with α=0.05, and 
power=0.80):

1. You are interested in determining if the average income of college freshman is 
less than $20,000.  You collect trial data and find that the mean income was 
$14,500 (SD=6000).

2. You are interested in determining if the average sleep time change in a year for 
college freshman is different from zero.  You collect the following data  of sleep 
change (in hours).

1. You are interested in determining if the average weight change in a year for 
college freshman is greater than zero.

Sleep 
Change

-0.55 0.16 2.6 0.65 -0.23 0.21 -4.3 2 -1.7 1.9



One Mean T-Test: Answers
1. You are interested in determining if the average income of college freshman is less than $20,000.  You collect 

trial data and find that the mean income was $14,500 (SD=6000).
• Effect size = (MeanH1-MeanH0)/SD= (14,500-20,000)/6000 = -0.917

• One-tailed test

• pwr.t.test(d=-0.917, sig.level=0.05, power=0.80, type="one.sample", alternative=“less")

• n = 8.871645 -> 9 samples

2. You are interested in determining if the average sleep time change in a year for college freshman is different 
from zero.  You collect the following data  of sleep change (in hours).

• Effect size =(MeanH1-MeanH0)/SD =(-0.446-0)/1.96 = -0.228

• Two-tailed test

• pwr.t.test(d=-0.228, sig.level=0.05, power=0.80, type="one.sample", alternative=“two.sided")

• n = 152.91 -> 153 samples

3. You are interested in determining if the average weight change in a year for college freshman is greater than 
zero.
• Guessed a large effect size (0.8), and used one-tailed test

• pwr.t.test(d=0.80, sig.level=0.05, power=0.80, type="one.sample", alternative=“greater")

• n = 11.14 -> 12 samples

Sleep Change -0.55 0.16 2.6 0.65 -0.23 0.21 -4.3 2 -1.7 1.9



Two Means T-test
Description: this tests if a mean from one group is different 
from the mean of another group for a normally distributed 
variable.  AKA, testing to see if the difference in means is 
different from zero.

Example: Is the average body temperature higher in women 
than in men?

• H0=0°F,   H1>0°F
• We will guess that the effect sizes will be medium
• For t-tests:

0.2=small, 0.5=medium, and 0.8 large effect sizes
• Selected greater, because we only cared to test if 

women’s temp was higher, not lower (group 1 is 
women, group 2 is men)

R Code: pwer -> pwr.t.test

pwr.t.test(d = , sig.level = , power = , type = c("two.sample", 
"one.sample", "paired"))

• d=effect size
• sig.level=significant level
• power=power of test
• type=type of test

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

1 1 2 1 Yes No

Effect size calculation
• Cohen’s D = (M2-M1)/SDpooled

• M2=Mean 2
• M1=Mean 1
• SDpooled =Pooled standard deviation

• SDpooled=√((SD1
2+ SD2

2)/2)



Two Means T-test
Results:

> #sample number
> pwr.t.test(d=0.5, sig.level=0.05, power=0.80, type="two.sample", alternative="greater")

Two-sample t test power calculation 

n = 50.1508
d = 0.5

sig.level = 0.05
power = 0.8

alternative = greater

NOTE: n is number in *each* group

→ Round up to 51, per group



Two Means T-Test: Practice
Calculate the sample size for the following scenarios (with α=0.05, and 
power=0.80):

1. You are interested in determining if the average daily caloric intake different 
between men and women.  You collected trial data and found the average 
caloric intake for males to be 2350.2 (SD=258), while females had intake of 
1872.4 (SD=420).

2. You are interested in determining if the average protein level in blood different 
between men and women.  You collected the following trial data on protein 
level (grams/deciliter).

3. You are interested in determining if the average glucose level in blood is lower 
in men than women

Male Protein 1.8 5.8 7.1 4.6 5.5 2.4 8.3 1.2

Female Protein 9.5 2.6 3.7 4.7 6.4 8.4 3.1 1.4



Two Means T-Test: Answers
1. You are interested in determining if the average daily caloric intake different between men and women.  You 

collected trial data and found the average caloric intake for males to be 2350.2 (SD=258), while females had 
intake of 1872.4 (SD=420).
• Effect size = (MeanH1-MeanH0)/ SDpooled =(2350.2-1872.4)/ √((2582+ 4202)/2) = 477.8/348.54 = 1.37

• two-tailed test

• pwr.t.test(d=1.37, sig.level=0.05, power=0.80, type=“two.sample", alternative=“two-sided")

• n = 9.43 -> 10 samples per group

2. You are interested in determining if the average protein level in blood different between men and women.  
You collected the following trial data on protein level (grams/deciliter).

• Effect size = (MeanH1-MeanH0)/ SDpooled =(4.59-4.98)/ √((2.582+ 2.882)/2) = -0.14

• two-tailed test

• pwr.t.test(d=-0.14, sig.level=0.05, power=0.80, type=“two.sample", alternative=“two-sided")

• n = 801.87 -> 802 samples per group

3. You are interested in determining if the average glucose level in blood is lower in men than women
• Guessed a small effect (0.20), then used a one-tailed test

• pwr.t.test(d=-0.20, sig.level=0.05, power=0.80, type=“two.sample", alternative=“less")

• n = 309.8 -> 310 samples per group

Male Protein 1.8 5.8 7.1 4.6 5.5 2.4 8.3 1.2

Female Protein 9.5 2.6 3.7 4.7 6.4 8.4 3.1 1.4



Paired T-test
Description: this tests if a mean from one group is different 
from the mean of another group, where the groups are 
dependent (not independent) for a normally distributed 
variable.  Pairing can be leaves on same branch, siblings, the 
same individual before and after a trial, etc.

Example: Is heart rate higher in patients after a run 
compared to before a run?

• H0;bpm (after) – bpm (before) ≤ 0
• H1; bpm (after) – bpm (before) > 0
• We will guess that the effect sizes will be large
• For t-tests:

0.2=small, 0.5=medium, and 0.8 large effect sizes
• Selected One-tailed, because we only cared if bpm 

was higher after a run
• Group 1 is after the run, while group 2 is before the 

run

R Code: pwer -> pwr.t.test

pwr.t.test(d = , sig.level = , power = , type = c("two.sample", 
"one.sample", "paired"))

• d=effect size
• sig.level=significant level
• power=power of test
• type=type of test

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

1 1 2 1 Yes Yes

Effect size calculation
• Cohen’s D = (M2-M1)/SDpooled

• M2=Mean 2
• M1=Mean 1
• SDpooled =Pooled standard deviation

• SDpooled=√((SD1
2+ SD2

2)/2)



Paired T-test
Results:
> #sample number
> pwr.t.test(d=0.8, sig.level=0.05, power=0.80, type="paired", alternative="greater")

Paired t test power calculation 

n = 11.14424
d = 0.8

sig.level = 0.05
power = 0.8

alternative = greater

NOTE: n is number of *pairs*

→ Round up to 12 pairs



Paired T-Test: Practice
Calculate the sample size for the following scenarios (with α=0.05, and 
power=0.80):

1. You are interested in determining if heart rate is higher in patients after a 
doctor’s visit compared to before a visit.  You collected the following trial data 
and found mean heart rate before and after a visit.

2. You are interested in determining if metabolic rate in patients after surgery is 
different from before surgery.  You collected trial data and found a mean 
difference of 0.73 (SD=2.9).

3. You are interested in determining if glucose levels in patients after surgery are 
lower compared to before surgery.

BPM before 126 88 53.1 98.5 88.3 82.5 105 41.9
BPM after 138.6 110.1 58.44 110.2 89.61 98.6 115.3 64.3



Paired T-Test: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):
1. You are interested in determining if heart rate is higher in patients after a doctor’s visit compared to before a visit.  

You collected the following trial data and found mean heart rate before and after a visit.

• Effect size = (MeanH1-MeanH0)/ SDpooled =(98.1-85.4)/ √((26.82+ 27.22)/2) =12.7/27 = 0.47

• one-tailed test

• pwr.t.test(d=0.47, sig.level=0.05, power=0.80, type=“paired", alternative=“greater")

• n = 29.39 -> 30 pairs

2. You are interested in determining if metabolic rate in patients after surgery is different from before surgery.  You 
collected trial data and found a mean difference of 0.73 (SD=2.9).
• Effect size = (MeanH1-MeanH0)/ SD =(0.73)/ 2.9 = 0.25

• two-tailed test

• pwr.t.test(d=0.25, sig.level=0.05, power=0.80, type=“paired", alternative=“two.sided")

• n = 127.52 -> 128 pairs

3. You are interested in determining if glucose levels in patients after surgery are lower compared to before surgery.
• Guessed a small effect (-0.20), then used a one tail-test {used a negative effect to match the ‘less’ alternative}

• pwr.t.test(d=-0.20, sig.level=0.05, power=0.80, type=“paired", alternative=“less")

• n = 155.92-> 156 pairs

BPM before 126 88 53.1 98.5 88.3 82.5 105 41.9

BPM after 138.6 110.1 58.44 110.2 89.61 98.6 115.3 64.3



One-Way ANOVA
Description: this tests if at least one mean is different among 
groups, where the groups are larger than two, for a normally 
distributed variable.  ANOVA is the extension of the Two 
Means T-test for more than two groups.

Example: Is there a difference in new car interest rates across 
6 different cities?

• H0=0%,   H1≠0%
• There are a total of 6 groups (cities)
• We will guess that the effect sizes will be small
• For f-tests:

0.1=small, 0.25=medium, and 0.4 large effect sizes
• No Tails in ANOVA
• Groups assumed to be the same size

R Code: pwer -> pwr.anova.test

pwr.anova.test(k =, f = , sig.level = , power = )

• k=number of groups
• f=effect size
• sig.level=significant level
• power=power of test

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

1 1 >2 1 Yes No

Effect size calculation
• η2 = SStreat / SStotal

• SStreat =treatment sum of squares 
• SStotal =total sum of squares

• f = √((η2 /(1- η2)



One-Way ANOVA
Results:

> pwr.anova.test(k =6 , f =0.1 , sig.level=0.05 , power =0.80 )

Balanced one-way analysis of variance power calculation 

k = 6
n = 214.7178
f = 0.1

sig.level = 0.05
power = 0.8

NOTE: n is number in each group

→ Round up to 215 samples per group



One-way ANOVA: Practice
Calculate the sample size for the following scenarios (with 
α=0.05, and power=0.80):

1. You are interested in determining there is a difference in 
weight lost between 4 different surgery options.  You collect 
the following trial data of weight lost in pounds (shown on 
right)

2. You are interested in determining if there is a difference in 
white blood cell counts between 5 different medication 
regimes.

Option 1 Option 2 Option 3 Option 4

6.3 9.9 5.1 1.0

2.8 4.1 2.9 2.8

7.8 3.9 3.6 4.8

7.9 6.3 5.7 3.9

4.9 6.9 4.5 1.6



One-way ANOVA: Answers
Calculate the sample size for the following scenarios (with 
α=0.05, and power=0.80):

1. You are interested in determining there is a difference in 
weight lost between 4 different surgery options.  You collect 
the following trial data of weight lost in pounds (shown on 
right)
• η2 = SStreat / SStotal =31.47/(31.47+62.87) = 0.33

• f = √((0.33/(1- 0.33) = 0.7

• 4 groups

• pwr.anova.test(k =4 , f =0.7 , sig.level=0.05 , power =0.80 )

• n = 6.63 -> 7 samples per group (28 total)

2. You are interested in determining if there is a difference in 
white blood cell counts between 5 different medication 
regimes.
• Guessed a medium effect size (0.25) 

• 5 groups

• pwr.anova.test(k =5 , f =0.25 , sig.level=0.05 , power =0.80 )

• n = 39.15 -> 40 samples per group (200 total)

Option 1 Option 2 Option 3 Option 4

6.3 9.9 5.1 1.0

2.8 4.1 2.9 2.8

7.8 3.9 3.6 4.8

7.9 6.3 5.7 3.9

4.9 6.9 4.5 1.6



Single Proportion Test
Description: this tests when you only have a single proportion 
and you want to know if the proportions of certain values 
differ from some constant proportion. 

Example: Is there a significance difference in cancer 
prevalence of middle-aged women who have a sister with 
breast cancer (5%) compared to the general population 
prevalence (2%)?

• H0=0,   H1≠0

• You don’t have background info, so you guess that 
there is a small effect size

• For h-tests:
0.2=small, 0. 5=medium, and 0.8 large effect sizes

• Selected Two-sided, because we don’t care about 
directionality

R Code: pwer -> pwr.p.test

pwr.p.test(h = , sig.level =, power =, alternative="two.sided", 
"less", or "greater" )

• h=effect size
• sig.level=significant level
• power=power of test
• alternative=type of tail

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

0 1 2 1 N/A N/A

Effect size calculation
• h= 2*asin(sqrt(p1))-2*asin(sqrt(p2))

• p1=proportion 1
• p2=proportion 2



Single Proportion Test
Results:

> #sample number 
> pwr.p.test(h=0.2, sig.level=0.05, power=0.80, alternative="two.sided")

proportion power calculation for binomial distribution (arcsine transformation) 

h = 0.2
n = 196.2215

sig.level = 0.05
power = 0.8

alternative = two.sided

→ Round up to 197



Single Proportion: Practice
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if the male incidence rate proportion of cancer in North 
Dakota is higher than the US average (prop=0.00490).  You find trial data cancer prevalence 
of 0.00495.

2. You are interested in determining if the female incidence rate proportion of cancer in North 
Dakota is lower than the US average (prop=0.00420).



Single Proportion: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if the male incidence rate proportion of cancer in North 
Dakota is higher than the US average (prop=0.00490).  You find trial data cancer prevalence 
of 0.00495.
• h= 2*asin(sqrt(0.00495))-2*asin(sqrt(0.00490))=0.0007

• pwr.p.test(h=0.0007, sig.level=0.05, power=0.80, alternative=“greater")

• n = 12617464 -> 12,617,464 samples

2. You are interested in determining if the female incidence rate proportion of cancer in North 
Dakota is lower than the US average (prop=0.00420).
• Guess a very low effect size (0.001)

• pwr.p.test(h=-0.001, sig.level=0.05, power=0.80, alternative=“less")

• n = 6182557 -> 6,182,557 samples



Two Proportions Test
Description: this tests when you only have two groups and 
you want to know if the proportions of each group are 
different from one another.

Example: Is the expected proportion of students passing a 
stats course taught by psychology teachers different from 
the observed proportion of students passing the same stats 
class taught by mathematics teachers?

• H0=0,   H1≠0
• You don’t have background info, so you guess that 

there is a small effect size
• For h-tests:

0.2=small, 0. 5=medium, and 0.8 large effect sizes
• Selected Two-sided, because we don’t care about 

directionality

R Code: pwer -> pwr.2p.test

pwr.2p.test(h = , sig.level =, power =, 
alternative="two.sided", "less", or "greater" )

• h=effect size
• sig.level=significant level
• power=power of test
• alternative=type of tail

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

0 2 2 2 N/A No

Effect size calculation
• h= 2*asin(sqrt(p1))-2*asin(sqrt(p2))

• p1=proportion 1
• p2=proportion 2



Two Proportions Test
Results:

> #sample number 
> pwr.2p.test(h=0.2, sig.level=0.05, power=.80, alternative="two.sided")

Difference of proportion power calculation for binomial distribution (arcsine transformation) 

h = 0.2
n = 392.443

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: same sample sizes

→ Round up to 393



Two Proportions: Practice
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if the expected proportion (P1) of students passing a stats 
course taught by psychology teachers is different than the observed proportion (P2) of 
students passing the same stats class taught by biology teachers.  You collected the 
following data of passed tests. 

2. You are interested in determining of the expected proportion (P1) of female students who 
selected YES on a question was higher than the observed proportion (P2) of male students 
who selected YES.  The observed proportion of males who selected yes was 0.75.

Psychology Yes Yes Yes No No Yes Yes Yes Yes No

Biology No No Yes Yes Yes No Yes No Yes Yes



Two Proportions: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if the expected proportion (P1) of students passing a stats 
course taught by psychology teachers is different than the observed proportion (P2) of 
students passing the same stats class taught by biology teachers.  You collected the 
following data of passed tests.
• P1=7/10=0.70, P2=6/10=0.60
• h= 2*asin(sqrt(0.60))-2*asin(sqrt(0.70))=-0.21
• pwr.2p.test(h=-0.21, sig.level=0.05, power=0.80, alternative=“two.sided")
• n = 355.96 -> 356 samples

2. You are interested in determining of the expected proportion (P1) of female students who 
selected YES on a question was higher than the observed proportion (P2) of male students 
who selected YES.  The observed proportion of males who selected yes was 0.75.
• Guess that the expected proportion (P1) =0.85
• h= 2*asin(sqrt(0.85))-2*asin(sqrt(0.75))=0.25
• pwr.2p.test(h=0.25, sig.level=0.05, power=0.80, alternative=“greater")
• n = 197.84 -> 198 samples

Psychology Yes Yes Yes No No Yes Yes Yes Yes No
Biology No No Yes Yes Yes No Yes No Yes Yes



Chi-Squared Test
Description: Extension of proportions test, which asks if table 
of observed values are any different from a table of expected 
ones.  Also called Goodness-of-fit test.

Example: Does the observed proportions of phenotypes 
from a genetics experiment different from the expected 
9:3:3:1? 

• H0=0,   H1≠0
• You don’t have background info, so you guess that 

there is a medium effect size
• For w-tests:

0.1=small, 0.3=medium, and 0.5 large effect sizes
• Degrees of freedoms is the number of proportions 

minus 1
4 (phenotypes) – 1 = 3

R Code: pwer -> pwr.chisq.test

pwr.chisq.test(w =, df = , sig.level =, power = )

• w=effect size
• df=degrees of freedom
• sig.level=significant level
• power=power of test

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

0 ≥1 ≥2 1 N/A No

Effect size calculation
• w = √(Χ2 /(n*df))

• X2= Chi-squared = ∑(O-E)2/E 
• O=observed
• E=expected

• n=number of samples
• df= degrees of freedom



Chi-Squared Test
Results:

> #sample number 
> pwr.chisq.test(w=0.3, df=3, sig.level=0.05, power=0.80)

Chi squared power calculation 

w = 0.3
N = 121.1396
df = 3

sig.level = 0.05
power = 0.8

NOTE: N is the number of observations

→ Round up to 122



Chi-Squared: Practice
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if the ethnic ratios in a company differ by gender.  You 
collect the following trial data from 200 employees.

2. You are interested in determining if the proportions of student by year (Freshman, 
Sophomore, Junior, Senior) is any different from 1:1:1:1.  You collect the following trial data.

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Grade Frs Frs Frs Frs Frs Frs Frs Soph Soph Soph Soph Soph Jun Jun Jun Jun Jun Sen Sen Sen

Gender White Black Am. Indian Asian
Male 0.60 0.25 0.01 0.14

Female 0.65 0.21 0.11 0.03



Chi-Squared: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if the ethnic ratios in a company differ by gender.  You collect the following 
trial data from 200 employees.

• If they were equal the expected ratios should be the same as the overall ethnic ratios (62.5, 23.0, 6.0, 8.5)

• Will just focus on males

• Χ2 (Chi-squared)= ∑(O-E)2/E = (60-62.5)2/62.5 + (25-23)2/23 + (1-6)2/6  + (14-8.5)2/8.5

• =0.10 + 0.17 + 4.17 + 3.56 = 8

• w = √(Χ2 /(n*df))= √(8/(200*3))=0.115

• pwr.chisq.test(w=0.115, df=3, sig.level=0.05, power=0.80)

• n = 824.39 -> 825 samples

2. You are interested in determining if the proportions of student by year (Freshman, Sophomore, Junior, Senior) 
is any different from 1:1:1:1.  You collect the following trial data.

• Χ2 (Chi-squared) = ∑(O-E)2/E = (7-5)2/5 + (5-5)2/5 + (5-5)2/5 + (3-5)2/5 = 0.8 + 0 + 0 + 0.8 = 1.6

• w = √(Χ2 /(n*df))= √(1.6/(20*3))=0.163

• pwr.chisq.test(w=0.163, df=3, sig.level=0.05, power=0.80)

• n = 410.34 -> 411 samples

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Grade Frs Frs Frs Frs Frs Frs Frs Soph Soph Soph Soph Soph Jun Jun Jun Jun Jun Sen Sen Sen

Gender White Black Am. Indian Asian

Male 60 25 1 14

Female 65 21 11 3



Simple Linear Regression
Description: this test determines if there is a significant 
relationship between two normally distributed numerical 
variables.  The predictor variable is used to try to predict the 
response variable.

Example: Is there a relationship between height and 
weight in college males?

• H0=0,   H1≠0
• You don’t have background info, so you guess that there is a 

large effect size
• For f2-tests:

0.02=small, 0.15=medium, and 0.35 large effect sizes
• For simple regression (only one predictor variable) = 

numerator df=1
• Output will be denominator degrees of freedom rather than 

sample size; will need to round up and add 2 to get sample 
size

R Code: pwer -> pwr.f2.test

pwr.f2.test(u =, v= , f2=, sig.level =, power = )

• u=numerator degrees of freedom
• v=denominator degrees of freedom
• f2=effect size 
• sig.level=significant level
• power=power of test

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

2 0 N/A N/A Yes N/A

Effect size calculation
• f2=R=√(R2)

• R=correlation coefficient
• R2 =goodness-of-fit

• Use adjusted R2



Simple Linear Regression
Results:

> #sample number 
> pwr.f2.test(u=1, f2=0.35, sig.level=0.05, power=0.80)

Multiple regression power calculation 

u = 1
v = 22.50313
f2 = 0.35

sig.level = 0.05
power = 0.8

> #denominator df to sample size
> round(22.5031,0)+2
[1] 25 → Sample size



Simple Linear Regression: Practice
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if height (meters) in plants can predict yield (grams of 
berries).  You collect the following trial data.

2. You are interested in determining if the size of a city (in square miles) can predict the 
population of the city (in # of individuals).

Yield 46.8 48.7 48.4 53.7 56.7
Height 14.6 19.6 18.6 25.5 20.4



Simple Linear Regression: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if height (meters) in plants can predict yield (grams of 
berries).  You collect the following trial data.
• Created variables in R

• yield<-c(46.8, 48.7, 48.4, 53.7, 56.7)

• height<-c(14.6, 19.6, 18.6, 25.5, 20.4)

• Ran linear model to find R-squared
• linearMod <- lm(height~yield)

• summary(linearMod) -> adj R2=0.2784

• f2=R=√(adj R2)= √(0.4588)=0.53

• pwr.f2.test(u=1, f2=0.53, sig.level=0.05, power=0.80)

• v=14.96 -> 15+ 2(variables) ->17 samples

2. You are interested in determining if the size of a city (in square miles) can predict the 
population of the city (in # of individuals).
• Guessed a large effect size (0.35); for 1 predictor so 1 df

• pwr.f2.test(u=1, f2=0.35, sig.level=0.05, power=0.80)

• v=22.5 -> 23+ 2(variables) ->25 samples

Yield 46.8 48.7 48.4 53.7 56.7

Height 14.6 19.6 18.6 25.5 20.4



Multiple Linear Regression
Description: The extension of simple linear regression.  The 
first major change is there are more predictor variables.  The 
second change is that interaction effects can be used.  Finally, 
the results typically can’t be plotted.

Example: Can height, age, and time spent at the gym, predict 
weight in adult males?

• H0=0,   H1≠0
• You don’t have background info, so you guess that there is a 

medium effect size
• For f2-tests:

0.02=small, 0.15=medium, and 0.35 large effect sizes
• Numerator degrees of freedom is the number of predictor 

variables (3)
• Output will be denominator degrees of freedom rather than 

sample size; will need to round up and add the total number 
of variables (4)

R Code: pwer -> pwr.f2.test

pwr.f2.test(u =, v= , f2=, sig.level =, power = )

• u=numerator degrees of freedom
• v=denominator degrees of freedom
• f2=effect size 
• sig.level=significant level
• power=power of test

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

>2 0 N/A N/A Yes N/A

Effect size calculation
• f2=R=√(R2)

• R=correlation coefficient
• R2 =goodness-of-fit

• Use adjusted R2



Multiple Linear Regression
Results:

> #sample number 
> pwr.f2.test(u=3, f2=0.15, sig.level=0.05, power=0.80)

Multiple regression power calculation 

u = 3
v = 72.70583
f2 = 0.15

sig.level = 0.05
power = 0.8

> #denominator df to sample size
> round(72.70583,0)+4
[1] 77 → Sample Size



Multiple Linear Regression: Practice
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if height (meters), weight (grams), and fertilizer added 
(grams) in plants can predict yield (grams of berries).  You collect the following trial data.

2. You are interested in determining if the size of a city (in square miles), number of houses, 
number of apartments, and number of jobs can predict the population of the city (in # of 
individuals).

Yield 46.8 48.7 48.4 53.7 56.7
Height 14.6 19.6 18.6 25.5 20.4
Weight 95.3 99.5 94.1 110 103

Fertilizer 2.1 3.2 4.3 1.1 4.3



Multiple Linear Regression: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if height (meters), weight (grams), and fertilizer added (grams) in 
plants can predict yield (grams of berries).  You collect the following trial data.
• Created variables in R

• yield<-c(46.8, 48.7, 48.4, 53.7, 56.7)

• height<-c(14.6, 19.6, 18.6, 25.5, 20.4)

• weight<-c(95.3, 99.5, 94.1, 110, 103)

• Fert<-c(2.1, 3.2, 4.3, 1.1, 4.3)

• Ran linear model to find R-squared
• linearMod2 <-lm(height~yield + weight + Fert)

• summary(linearMod2) -> Adj R2 = 0.6765

• f2=R=√(adj R2)= = √(0.6765)=0.822

• pwr.f2.test(u=3, f2=0.822, sig.level=0.05, power=0.80)
• v=13.7 -> 14+ 4(variables) ->18 samples

2. You are interested in determining if the size of a city (in square miles), number of houses, number of 
apartments, and number of jobs can predict the population of the city (in # of individuals).
• Guessed a large effect size (0.35); for 4 variables (df=3)
• pwr.f2.test(u=3, f2=0.35, sig.level=0.05, power=0.80)

• v=31.31 -> 32+ 4(variables) ->36 samples

Yield 46.8 48.7 48.4 53.7 56.7
Height 14.6 19.6 18.6 25.5 20.4

Weight 95.3 99.5 94.1 110 103
Fertilizer 2.1 3.2 4.3 1.1 4.3



Correlation
Description: this test determines if there is a difference 
between two numerical values.  It is like simple regression, 
but is not identical.

Example: Is there a correlation between hours studied and 
test score?

• H0=0,   H1≠0
• You don’t have background info, so you guess that 

there is a large correlation
• For correlation levels (r):

0.1=small, 0.3=medium, and 0.5 large correlations

R Code: pwr -> pwer.r.test

pwr.r.test(r = , sig.level = , power = )

• r=correlation
• sig.level=significant level
• power=power of test

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

2 0 N/A N/A Yes No

Effect size calculation
• r=correlation coefficient



Correlation
Results:

> #sample number
> pwr.r.test(r=0.5, sig.level=0.05, power=0.80)

approximate correlation power calculation (arctangh transformation) 

n = 28.24841
r = 0.5

sig.level = 0.05
power = 0.8

alternative = two.sided

→ Round up to 29



Correlation: Practice
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if there is a correlation between height and 
weight in men

2. You are interested in determining if, in lab mice, the correlation between 
longevity (in months) and average protein intake (grams).

Males
Height 178 166 172 186 182
Weight 165 139 257 225 196



Correlation: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if there is a correlation between height and 
weight in men 
• Created variables in R and ran correlation test

• MH <-c(178,166,172,186,182)

• MW <-c(165,139,257,225,196)

• cor(MH, MW) -> 0.37

• pwr.r.test(r=0.37, sig.level=0.05, power=0.80)

• n = 54.19 -> 55 samples

2. You are interested in determining if, in lab mice, the correlation between longevity (in 
months) and average protein intake (grams).
• Guessed large (0.5) correlation

• pwr.r.test(r=0.5, sig.level=0.05, power=0.80)

• n = 28.24 -> 29 samples

Males
Height 178 166 172 186 182

Weight 165 139 257 225 196



Non-Parametric T-tests
Description: versions of the t-tests for non-parametric 
data.
• One Mean Wilcoxon: sample mean against set value
• Mann-Whitney: two sample means (unpaired)
• Paired Wilcoxon: two sample means (paired)

• There aren’t any R packages that had useful non-
parametric t-tests

• I suggest using the parametric + 15% approach

Examples: (for t-tests, 0.2=small, 0.5=medium, and 0.8 large effect 
sizes)
One Mean Wilcoxon:
Is the average number of children in Grand Forks families different 
than 1?

• H0=1 child
• H1>1 child
• You don’t have background info, so you guess that there is a medium

effect size
• Select one-tailed (greater)

Mann-Whitney:
Does the average number of snacks per day for individuals on a diet 
differ between young and old persons?

• H0=0 difference in snack number,   
• H1≠0 difference in snack number 
• You don’t have background info, so you guess that there is a small

effect size
• Select two-sided

Paired Wilcoxon:
Is genome methylation patterns different between identical twins?

• H0=0% methylation
• H1≠0% methylation
• You don’t have background info, so you guess that there is a large

effect size
• Select one-tailed (greater)

Name Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

One Mean 
Wilcoxon

1 0 0 0 No N/A

Mann-Whitney 1 1 2 1 No No

Paired Wilcoxon 1 1 2 1 No Yes

Effect size calculation
• Cohen’s D: (M2-M1)/SD; (M2-M1)/Sdpooled; (Meandiff)/ SDdiff



Non-parametric Tests
Results:
>#One Mean Wilcoxon
> pwr.t.test(d=0.5, sig.level=0.05, power=0.80, type="one.sample", alternative="greater")

One-sample t test power calculation 
n = 26.13753
d = 0.5

sig.level = 0.05
power = 0.8

alternative = greater
> #Non-parametric correction
> round(26.13753*1.15,0)
[1] 30

>#Mann-Whitney
> pwr.t.test(d=0.2, sig.level=0.05, power=0.80, type=“two.sample", 
alternative="two.sided")

Two-sample t test power calculation 
n = 198.1508
d = 0.2

sig.level = 0.05
power = 0.8

alternative = two.sided
> #Non-parametric correction
> round(198.1508*1.15,0)  
[1] 228

>#Paired Wilcoxon 
> pwr.t.test(d=0.8, sig.level=0.05, power=0.80, type="paired", 
alternative="greater")  

Paired t test power calculation 
n = 11.14424
d = 0.8

sig.level = 0.05
power = 0.8

alternative = greater
NOTE: n is number of *pairs*
> #Non-parametric correction
> round(11.14424*1.15,0)  
[1] 13

→ Total sample size

→ Total sample size

→ Total number of pairs



Non-Parametric T-tests: Practice
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if the average number of pets in Grand Forks families is 
greater than 1.  You collect the following trial data for pet number.

2. You are interested in determining if the number of meals per day for individuals on a diet is 
higher in younger people than older.  You collected trial data on meals per day.

3. You are interested in determining if genome methylation patterns are higher in the first 
fraternal twin born compared to the second.  You collected the following trial data on 
methylation level difference (in percentage).

Pets 1 1 1 3 2 1 0 0 0 4

Young meals 1 2 2 3 3 3 3 4
Older meals 1 1 1 2 2 2 3 3

Methy. Diff (%) 5.96 5.63 1.25 1.17 3.59 1.64 1.6 1.4



Non-Parametric T-tests: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):
1. You are interested in determining if the average number of pets in Grand Forks families is greater than 1.  You 

collect the following trial data for pet number.
• Effect size = (MeanH1-MeanH0)/SD= (1.3-1.0)/1.34 =0.224
• One-tailed test
• pwr.t.test(d=0.224, sig.level=0.05, power=0.80, type="one.sample", alternative=“greater")
• n =124.58*1.15 (then round up)-> 143 samples

2. You are interested in determining if the number of meals per day for individuals on a diet is higher in younger people 
than older.  You collected trial data on meals per day.

• Effect size = (MeanH1-MeanH0)/SDpooled =(2.625-1.875)/ √((0.922+ 0.832)/2) = 0.856
• One-tailed test
• pwr.t.test(d=0.856, sig.level=0.05, power=0.80, type=“two.sample", alternative=“greater")
• n = 17.59*1.15 (then round up)-> 20 samples per group

3. You are interested in determining if genome methylation patterns are different in the first fraternal twin born 
compared to the second.  You collected the following trial data on methylation level difference (in percentage).
• Effect size = (Meandiff)/ SDdiff =(2.78)/ 2.01 = 1.38
• Two-tailed test
• pwr.t.test(d=1.38, sig.level=0.05, power=0.80, type=“paired", alternative=“two.sided")
• n = 6.29*1.15 (then round up) -> 7 pairs

Pets 1 1 1 3 2 1 0 0 0 4

Young meals 1 2 2 3 3 3 3 4

Older meals 1 1 1 2 2 2 3 3

Methy. Diff (%) 5.96 5.63 1.25 1.17 3.59 1.64 1.6 1.4



Kruskal Wallace Test
Description: this tests if at least one mean is different among 
groups, where the groups are larger than two for a non-normally 
distributed variable. (AKA, non-parametric ANOVA). There really isn’t 
a good way of calculating sample size in R, but you can use a rule of 
thumb: 
1. Run Parametric Test
2. Add 15% to total sample size

Example: Is there a difference in draft rank across 3 different 
months?

• H0=0,   H1≠0
• There will be a total of 3 groups (months)
• You don’t have background info, so you guess that 

there is a medium effect size
• For f-tests:

0.1=small, 0.25=medium, and 0.4 large effect sizes
• No Tails in ANOVA
• Groups assumed to be the same size

R Code: pwer -> pwr.anova.test

pwr.anova.test(k =, f = , sig.level = , power = )

• k=number of groups
• f=effect size
• sig.level=significant level
• power=power of test

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

1 1 >2 1 No No

Effect size calculation
• η2 = SStreat / SStotal

• SStreat =treatment sum of squares 
• SStotal =total sum of squares

• f = √((η2 /(1- η2)



Kruskal Wallace Test
Results:

> #sample number of ANOVA
> pwr.anova.test(k =3 , f =0.25 , sig.level=0.05 , power =0.80 )

Balanced one-way analysis of variance power calculation 

k = 3
n = 52.3966
f = 0.25

sig.level = 0.05
power = 0.8

NOTE: n is number in each group

> #15% correction factor
> 52.3996 * 1.15
[1] 60.25954 → Round up to 61 samples per group



Kruskal Wallace Test: Practice
Calculate the sample size for the following scenarios 
(with α=0.05, and power=0.80):

1. You are interested in determining there is a 
difference in hours worked across 3 different groups 
(faculty, staff, and hourly workers). You collect the 
following trial data of weekly hours (shown on right).

2. You are interested in determining there is a 
difference in assistant professor salaries across 25 
different departments.

Faculty Staff Hourly

42 46 29

45 45 42

46 37 33

55 42 50

42 40 23



Kruskal Wallace Test: Answers
Calculate the sample size for the following scenarios 
(with α=0.05, and power=0.80):

1. You are interested in determining there is a 
difference in hours worked across 3 different groups 
(faculty, staff, and hourly workers). You collect the 
following trial data of weekly hours (shown on right).
• η2 = SStreat / SStotal =286.5/(286.5+625.2) = 0.314
• f = √((0.314/(1- 0.314) = 0.677
• 3 groups
• pwr.anova.test(k =3, f =0.677, sig.level=0.05, power =0.80)
• n =8.09*1.15 (then round up)-> 10 samples per group

2. You are interested in determining there is a 
difference in assistant professor salaries across 25 
different departments.
• Guess small effect size (0.10)
• 25 groups
• pwr.anova.test(k =25, f =0.10, sig.level=0.05, power =0.80)
• n =90.67*1.15 (then round up)-> 105 samples per group

Faculty Staff Hourly

42 46 29

45 45 42

46 37 33

55 42 50

42 40 23



Repeated Measures ANOVA
Description: this tests if at least one mean is different among 
groups, where the groups are repeated measures (more than 
two) for a normally distributed variable.  Repeated Measures 
ANOVA is the extension of the Paired T-test for more than two 
groups.

Example: Is there a difference in blood pressure at 1, 2, 3, 
and 4 months post-treatment?

• H0=0,   H1≠0
• 1 group, 4 measurements
• You don’t have background info, so you guess that there is a 

small effect size
• For f-tests:

0.1=small, 0.25=medium, and 0.4 large effect sizes
• For the nonsphericity correction coefficient, 1 means 

sphericity is met.  There are methods to estimate this but 
will go with 1 for this example.

• Type will be 1, as we want within-effect

R Code: WebPower -> wp.rmanova

wp.rmanova(ng = NULL, nm = NULL, f = NULL, nscor = 1, alpha = 
0.05, power = NULL, type = 0) 

• ng=number of groups
• nm=number of measurements
• f=effect size
• nscor=nonsphericity correction coefficient
• alpha=significant level of test
• power=statistical power
• type=(0,1,2) The value "0" is for between-effect; "1" is for                  

within-effect; and "2" is for interaction effect

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

1 1 >2 1 Yes Yes

Effect size calculation

• 𝑓 =
𝜎𝑚

𝜎

• σm= standard deviation of group 
means

• 𝜎𝑚 = 
σ𝑘=1
𝐾 (𝑚𝑘−𝑚)2

𝑘

• mk = group mean
• m = overall mean 
• k=number of groups, 

• σ =overall standard deviation

NOTE: 
• Within-effects: variability 

of a particular value for 
individuals in a sample

• Between-effects: 
examines differences 
between individuals



Repeated Measures ANOVA
Results:

> #sample size
> wp.rmanova(n=NULL, ng=1, nm=4, f=0.1, nscor=1,
+            alpha=0.05, power=0.80, type=1)
Repeated-measures ANOVA analysis

n   f     ng  nm nscor alpha power
1091.559  0.1   1     4      1       0.05   0.8

NOTE: Power analysis for within-effect test
URL: http://psychstat.org/rmanova

→ Round up to 1092 samples total



Repeated Measures ANOVA: Practice
Calculate the sample size for the following scenarios 
(with α=0.05, and power=0.80):

1. You are interested in determining if there is a 
difference in blood serum levels at 6, 12, 18, and 24 
months post-treatment. You collect the following trial 
data of blood serum in mg/dL (shown on right).

2. You are interested in determining if there is a 
difference in antibody levels at 1, 2, and 3 months 
post-treatment.

6 months 12 months 18 months 24 months

38 38 46 52

13 44 15 29

32 35 53 60

35 48 51 44

21 27 29 36



Repeated Measures ANOVA: Answers
Calculate the sample size for the following scenarios (with α=0.05, and 
power=0.80):

1. You are interested in determining if there is a difference in blood serum 
levels at 6, 12, 18, and 24 months post-treatment. You collect the following 
trial data of blood serum in mg/dL (shown on right).

• 𝑓 =
𝜎𝑚

𝜎
= 

σ𝑘=1
𝐾 (𝑚𝑘−𝑚)2

𝑘
/ σ

• f = 
(27.8−37.3)2+(38.4−37.3)2+(38.8−37.3)2+(25.2−37.3)2

4
/ 12.74 = 0.608

• To get sphericity, ran ANOVA

• library(ez)

• anova3 <- ezANOVA(ex3, dv=Serum, wid=Patient, within=.(Month),detailed=TRUE)

• print(anova3$ANOVA)

• Sphericity was non-significant (0.43), so coefficient of 1

• One group, four measurements, within-effects so type 1

• wp.rmanova(n=NULL, ng=1, nm=4, f=0.608, nscor=1, alpha=0.05, power=0.80, type=1)

• n =30.81-> 31 samples total

2. You are interested in determining if there is a difference in antibody levels 
at 1, 2, and 3 months post-treatment.
• Guess a nonsphericity correction of of 1 and medium effect 0.25

• One group, three measurements, type 1

• wp.rmanova(n=NULL, ng=1, nm=3, f=0.25, nscor=1, alpha=0.05, power=0.80, type=1)

• n =155.66-> 156 samples total

6 months 12 months 18 months 24 months

38 38 46 52

13 44 15 29

32 35 53 60

35 48 51 44

21 27 29 36



Multi-Way ANOVA (1 Category of Interest)
Description: this test is an extension of ANOVA, where there 
is more than one category, but only one category is of 
interest.  The other category/categories are things that need 
to be controlled for (blocking/nesting/random effects/etc.).

Example: Is there difference in treatment (Drug A, B, and C) 
from a series of four different hospital sections (Block 1, 2, 3, 
and 4)?

• H0=0,   H1≠0
• Category of interest: Treatment
• Want to control for the Sections (Blocking)
• Numerator df (Treatment) = 3-1=2
• Number of groups (Treatment *Section)=3*4=12
• You don’t have background info, so you guess that there is a 

medium effect size
• For f-tests:

0.1=small, 0.25=medium, and 0.4 large effect sizes

R Code: WebPower -> wp.kanova

wp.kanova(ndf = NULL, f = NULL, ng = NULL, alpha = 0.05, power = 
NULL)

• ndf=numerator degrees of freedom
• f=effect size
• ng=number of groups
• alpha=significance level
• power=statistical power

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

1 ≥2 ≥2 1 Yes No

Effect size calculation

• 𝑓 =
𝜎𝑏

𝜎𝑤

• 𝜎𝑏=standard deviation of blocking sections

• 𝜎𝑏= 
σ𝑘=1
𝐾 (𝜇𝑘−𝜇)

2

𝐾
, where 𝜇𝑘=mean of section, 𝜇=overall mean, and 

𝐾=number of sections
• 𝜎𝑤 =standard deviation of all groups (treatment*section)

• 𝜎𝑤= 
σ
𝑗=1
𝐽 σ𝑘

𝐾(𝜇𝑗𝑘−𝜇)
2

𝐽𝐾
, where 𝜇𝑗𝑘=mean of group, 𝜇=overall mean, 

𝐽=number of treatments,
• and  𝐾=number of sections



Multi-Way ANOVA (1 Category of Interest)
Results:

> #sample size
> wp.kanova(ndf=2, f=0.25, ng=12, alpha=0.05, power=0.80)
Multiple way ANOVA analysis

n  ndf ddf f   ng  alpha power
157.3764      2   145.3764    0.25  12  0.05   0.8

NOTE: Sample size is the total sample size
URL: http://psychstat.org/kanova

→ Round up to 158 total samples



Multi-Way ANOVA (>1 Category of Interest)
Description: this test is an extension of ANOVA, where there 
is more than one category, and each category is of interest.  If 
there is two categories, it is 2-way ANOVA; three categories, 
3-way ANOVA, etc.

Example: Is there difference in treatment (Drug A, B, and C) 
across age (child, adult, elder) and cancer stage (I, II, III, IV, V)?

• H0=0,   H1≠0
• Categories of interest: Treatment, Age, and Cancer Stage
• Numerator df = Treat DF * Age DF * Stage DF = (3-1)*(3-

1)*(5-1)=2*2*4=16
• Number of groups = Treat*Age*Stage = 3*3*5=45
• You don’t have background info, so you guess that there is a 

small effect size
• For f-tests:

0.1=small, 0.25=medium, and 0.4 large effect sizes

R Code: WebPower -> wp.kanova

wp.kanova(ndf = NULL, f = NULL, ng = NULL, alpha = 0.05, power = 
NULL)

• ndf=numerator degrees of freedom
• f=effect size
• ng=number of groups
• alpha=significance level
• power=statistical power

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

1 ≥2 ≥2 >1 Yes No

Effect size calculation (sort of)
• η2 = 𝜎𝑚

2 / 𝜎𝑡
2

• 𝜎𝑚
2 =between-group variance

• 𝜎𝑡
2 =total variance

• f = Τη2 (1 − η2)



Multi-Way ANOVA (>1 Category of Interest)
Results:

> #sample size
> wp.kanova(ndf=16, f=0.10, ng=45, alpha=0.05, power=0.80)  
Multiple way ANOVA analysis

n  ndf ddf f  ng  alpha power
1940.159     16   1895.159  0.1 45  0.05   0.8

NOTE: Sample size is the total sample size
URL: http://psychstat.org/kanova

→ Round up to 1941 total samples



Multi-Way ANOVA: Practice
Calculate the sample size for the following scenarios 
(with α=0.05, and power=0.80):

1. You are interested in determining if there is a 
difference in treatment (Drug A, B, and C), while 
controlling for age (child=c, adult=a, elder=e). You 
collect the following trial data for treatment (shown 
on right).

2. You are interested in determining if there is a 
difference in treatment (Drug A, B, and C) across age 
(child, adult, elder) and cancer stage (I, II, III, IV, V).  
You collect trial data and find that the between-
group variance is 27.3, while the total variance is 
85.2.

Drug A Drug B Drug C

c a e c a e c a e

-6.4 8.7 -3.1 1.3 -6.0 6.8 -2.0 -4.3 -1.2

-8.2 -6.3 -6.5 3.6 1.3 2.4 1.5 1.3 1.1

7.9 -1 -1.5 3.9 -1.9 1.3 2.5 -8.2 -9.7



Multi-Way ANOVA: Answers
Calculate the sample size for the following scenarios (with α=0.05, and 
power=0.80):

1. You are interested in determining if there is a difference in treatment (Drug A, 
B, and C), while controlling for age (child=c, adult=a, elder=e). You collect the 
following trial data for treatment (shown on right).
• Only care about Drug, so focus on treatment only

• 𝑓 =
𝜎𝑏

𝜎𝑤
= ൘

σ𝑘=1
𝐾 (𝜇𝑘−𝜇)2

𝐾

σ
𝑗=1
𝐽 σ𝑘

𝐾(𝜇𝑗𝑘−𝜇)
2

𝐽𝐾

• J= drug groups, K=age groups

• 𝑓 = ( Τ(−1.82 − −0.84 )2+((1.41 − −0.84 )2+((−2.11 − −0.84 )2) 3 / 

ൗ
(−2.23 − (−0.84))2+(0.47 − (−0.84))2+(−3.7 − (−0.84))2+(2.93 − (−0.84))2+

(−2.2 − (−0.84))2+(3.5 − (−0.84))2+(0.67 − (−0.84))2+(−3.73 − (−0.84))2+(−3.27 − (−0.84))2
3 ∗ 3

• 𝑓 = Τ1.74 2.65 = 0.657

• Numerator df = 3 (Drug treatments) -1 = 2
• Number of groups = 3*3 = 9

• wp.kanova(ndf=2, f=0.657, ng=9, alpha=0.05, power=0.80)  

• n =26.6-> 27 samples total (3 per group)

2. You are interested in determining if there is a difference in treatment (Drug A, 
B, and C) across age (child, adult, elder) and cancer stage (I, II, III, IV, V). You 
collect trial data and find that the between-group variance is 27.3, while the total variance 
is 85.2.
• Care about treatment, age, and cancer stage
• Numerator df = (3-1)*(3-1)*(5-1)=2*2*4=16

• Number of groups is 3*3*5=45

• η2 = 𝜎𝑚
2 / 𝜎𝑡

2= 27.3/85.2 =0.32
• f = Τη2 (1 − η2) = Τ0.32 (1 − 0.32) = 0.686

• wp.kanova(ndf=16, f=0.686, ng=45, alpha=0.05, power=0.80)  

• n 67.03-> 68 samples, need 90 samples to have even groups (2 per group)

Drug A Drug B Drug C

c a e c a e c a e

-6.4 8.7 -3.1 1.3 -6.0 6.8 -2.0 -4.3 -1.2

-8.2 -6.3 -6.5 3.6 1.3 2.4 1.5 1.3 1.1

7.9 -1 -1.5 3.9 -1.9 1.3 2.5 -8.2 -9.7



Logistic Regression
Description: Tests whether a predictor variable is a significant 
predictor of a binary outcome, with or without other 
covariates.  It is a type of non-parametric regression: 
numerical variables are not normally distributed. In Logistic 
regression, the response variable (Y) is binary (0/1). 

Example: Does body mass index (BMI) influences mortality 
(yes 1, no 0)?

• H0=0,   H1≠0
• You must have at least some background (or good guess) on 

the p0 and p1 probabilities; let’s use 0.15 and 0.25
• Will use ‘two-sided’ because we don’t care about direction
• BMI seems normally distributed, so will go with normal for 

the family (but should confirm the distribution for whatever 
predictor variable you use)

• Can leave the parameter empty at the default of mean=0, 
SD=1

R Code: WebPower -> wp.logistic

wp.logistic(n = NULL, p0 = NULL, p1 = NULL, alpha = 0.05,
power = NULL, alternative = c("two.sided", "less", "greater"),
family = c("Bernoulli", "exponential", "lognormal", "normal", 
"Poisson", "uniform"), parameter = NULL)

• p0=  Prob(Y=1|X=0): the probability of observing 1 for the  outcome 
variable Y when the predictor X equals 0

• p1= Prob(Y=1|X=1): the probability of observing 1 for the outcome 
variable Y when the predictor X equals 1

• alpha= significance level
• power= statistical power
• alternative= direction of the alternative hypothesis ("two.sided" or 

"less" or "greater")
• family= distribution of the predictor ("Bernoulli","exponential", 

"lognormal", "normal","Poisson", "uniform"). The default is 
"Bernoulli"

• parameter= corresponding parameter for the predictor’s distribution. 
The default is 0.5 for "Bernoulli", 1 for "exponential", (0,1) for 
"lognormal" or "normal", 1 for "Poisson", and (0,1) for "uniform"

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

≥2 0 N/A N/A No N/A

Effect size calculation
• N/A, uses probability information instead



Logistic Regression
Results:

> #sample size
> wp.logistic(p0=0.15, p1=0.25, alpha=0.05, power=0.80, alternative="two.sided", family="normal")
Power for logistic regression

p0     p1          beta0            beta1                  n     alpha  power
0.15  0.25   -1.734601   0.6359888   165.3687        0.05     0.8

URL: http://psychstat.org/logistic

→ Round up to 166 total samples



Poisson Regression
Description: Tests whether a predictor variable influences the 
rate of events over a set period, with or without other 
covariates.  It is a type of non-parametric regression: 
numerical variables are not normally distributed. In Poisson 
regression, the events within the rate are assumed to be 
independent.  Subjects can have multiple events, as long as 
they are independent.

Example: Does a change in drug dose decrease the rate of 
adverse affects?

• H0=0,   H1≠0
• You must have at least some background (or good guess) on the 

exp0 and exp1 rate; let’s use 1.0 and 0.80
• Will use ‘less’ because we’re asking if the alternative hypothesis 

has a lower rate than the null
• Because I have no idea about the distribution of drug dosage, I 

will go with uniform (but should confirm the distribution for 
whatever predictor variable you use)

• Can leave the parameter empty at the default of mean=0, SD=1

R Code: WebPower -> wp.poisson

wp.poisson(n = NULL, exp0 = NULL, exp1 = NULL, alpha = 0.05, 
power = NULL, alternative = c("two.sided", "less", "greater"), family 
= c("Bernoulli", "exponential", "lognormal", "normal", "Poisson", 
"uniform"), parameter = NULL)

• exp0= the base rate under the null hyp.(must be positive value)
• exp1= the relative increase of the event rate. It is used for calculation 

of the effect size
• alpha= significance level
• power= statistical power
• alternative= direction of the alternative hypothesis ("two.sided" or 

"less" or "greater")
• family= distribution of the predictor ("Bernoulli","exponential", 

"lognormal", "normal","Poisson", "uniform"). The default is 
"Bernoulli"

• parameter= corresponding parameter for the predictor’s distribution. 
The default is 0.5 for "Bernoulli", 1 for "exponential", (0,1) for 
"lognormal" or "normal", 1 for "Poisson", and (0,1) for "uniform"

Numeric. 
Var(s)

Cat. Var(s) Cat. Var 
Group #

Cat Var. # of 
Interest

Parametric Paired

≥2 0 N/A N/A No N/A

Effect size calculation
• N/A, uses rate information instead



Poisson Regression
Results:

> #sample size
> wp.poisson(exp0=1.0, exp1=0.80, alpha=0.05, power=0.80, alternative ="less", family="uniform")
Power for Poisson regression

n    power    alpha    exp0    exp1    beta0             beta1
1666.539          0.8      0.05          1        0.8            0   -0.2231436

URL: http://psychstat.org/poisson

→ Round up to 1667 total samples



Logistic/Poisson Regression: Practice
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if body temperature influences sleep disorder prevalence 
(yes 1, no 0). You collect the following trial data.

2. You are interested in determining if the rate of lung cancer incidence changes with a drug 
treatment.

Temperature 98.6 98.5 99.0 97.5 98.8 98.2 98.5 98.4 98.1
Sleep Disorder? No No Yes No Yes No No Yes No



Logistic/Poisson Regression: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if body temperature influences sleep disorder prevalence 
(yes 1, no 0). You collect the following trial data.
• Logistic Regression (two.sided)
• Mean temp is 98.4 (SD=0.436) -> range of one SD=(97.964 --98.836)
• P0=0.33 (as only one had sleep disorder at ranges outside one SD); P1=0.67
• Temperature is normally distributed
• wp.logistic(p0=0.33, p1=0.67, alpha=0.05, power=0.80, alternative="two.sided", family="normal")
• n =40.80-> 41 samples total

2. You are interested in determining if the rate of lung cancer incidence changes with a drug 
treatment.
• Poisson Regression (two.sided)

• Expect the base rate (intercept) for male lung cancer is 57.8 (per 100,000), so exp0 = exp(57.8/100000) = 1.0005

• Expect the relative increase of the event rate (slope) to be -1.02, so exp1 = exp(-1.02) = 0.36

• Go with default distribution of Bernoulli

• wp.poisson(exp0=1.0005, exp1=0.36, alpha=0.05, power=0.80, alternative =“two.sided", family=“Bernoulli")

• n =56.8-> 59 samples total

Temperature 98.6 98.5 99.0 97.5 98.8 98.2 98.5 98.4 98.1

Sleep Disorder? No No Yes No Yes No No Yes No



Multilevel Modeling: Cluster Randomized Trials
Description: Multilevel models are used when data are 
clustered within a hierarchical structure that will make them 
non-independent.  Also known as linear mixed models.

Cluster randomized trials (CRT) are a type of multilevel design 
where the entire cluster is randomly assigned to a control 
arm or one or more treatment arms.

Example: Is there a difference in blood glucose levels between a treatment and 
control?

• H0=0,   H1≠0
• You don’t have background info, so you guess that there is a medium

effect size
• For f-tests:

0.1=small, 0.25=medium, and 0.4 large effect sizes
• Don’t know the icc, so will guess at 0.1 (0.5 is the default for repeated 

measures, but we expect this to be lower, since the observations are from 
different people)

• Alternative is “two.sided” as we only care about difference
• We can test for two sizes: number per cluster or cluster number

1. Try for 100 clusters 
2. Try for 15 individuals per cluster to get cluster number

R Code: WebPower -> wp.crt2arm

wp.crt2arm(n=NULL, f = NULL, J = NULL, icc = NULL, power = NULL, alpha = 
0.05, alternative = c("two.sided", "one.sided")) 

• n= sample size (number of individuals per cluster)
• f= effect size (either main effect of treatment, or mean difference 

between treatment clusters and control clusters)
• J= number of clusters/sides.  It tells how many clusters are considered 

in the study design.  At least two clusters are required
• icc= intra-class correlation (degree to which two randomly drawn 

observations within a cluster are correlated)
• alpha= significance level
• power= statistical power
• alternative= direction of the alternative hypothesis ("two.sided" or 

"less" or "greater")

Effect size calculation

• 𝑓 = ൗ𝜇𝐷 (𝜎𝐵
2+𝜎𝑊

2 )

• 𝜇𝐷=mean difference between 
treatment and control clusters

• 𝜎𝐵
2=between-cluster variance

• 𝜎𝑊
2 =within-cluster variance

NOTE: here we show a 
2 arm example 
(treatment, control); to 
use a 3 arm design 
(treatment1, 
treatment2, control), 
use wp.crt3arm



Multilevel Modeling: Cluster Randomized Trials
Results:

> #Multilevel Modeling
> 
> #CRT sample size (number per cluster)
> wp.crt2arm(f=0.25, J=100, icc=0.1, alpha=0.05, power=0.80, alternative="two.sided")
Cluster randomized trials with 2 arms

J        n                  f  icc power alpha
100 9.456102 0.25 0.1   0.8         0.05

NOTE: n is the number of subjects per cluster.
URL: http://psychstat.org/crt2arm
> 
> #CRT sample size (cluster number)
> wp.crt2arm(f=0.25, n=15, icc=0.1, alpha=0.05, power=0.80, alternative="two.sided")
Cluster randomized trials with 2 arms

J     n        f icc power alpha
82.33782    15 0.25 0.1   0.8       0.05

NOTE: n is the number of subjects per cluster.
URL: http://psychstat.org/crt2arm

→ Round up to 10 individuals per cluster

→ Round up to 84 clusters (42 per arm)



Multilevel Modeling: Multisite Randomized Trials
Description: Multilevel models are used when data are clustered 
within a hierarchical structure that will make them non-independent.  
Also known as linear mixed models.

Multisite randomized trails (MRT) are a type of multilevel design 
where the entire cluster is randomly assigned to a control arm or one 
or more treatment arms, but then can be analyzed in a two-level 
hierarchical linear model.  Can look at three types of tests: (1) The 
"main" type tests treatment main effect; (2) The "site" type tests the 
variance of cluster/site means; and (3) The "variance" type tests 
variance of treatment effects

Example: Is there a difference in blood glucose levels between a treatment and 
control?

• H0=0,   H1≠0
• You don’t have background info, so you guess that there is a medium effect 

size
• For f-tests:

0.1=small, 0.25=medium, and 0.4 large effect sizes
• Try a main effect, with a tau11 of 0.5 and a sg2 of 1.0
• Alternative is “two.sided” as we only care about difference
• We can test for two sizes: number per cluster or cluster number

1. Try for 100 clusters
2. Try for 15 individuals per cluster to get cluster number

R Code: WebPower -> wp.mrt2arm

wp.mrt2arm(n = NULL, f = NULL, J = NULL, tau00 = NULL, tau11 = NULL, sg2 = NULL, power 
= NULL, alpha = 0.05, alternative = c("two.sided", "one.sided"), type = c("main", "site", 
"variance")) 

• f= effect size (either main effect of treatment, or mean difference between treatment 
clusters and control clusters)

• J= number of clusters/sides.  It tells how many clusters are considered in the study 
design.  At least two clusters are required

• tau00= variance of cluster/site means (must be positive); one of the residual variances in 
the second level

• tau11= variance of treatment effects across sites (must be positive); one of the residual 
variances in the second level

• sg2= level-one error variance; variance in the first level
• alpha= significance level
• power= statistical power
• alternative= direction of the alternative hypothesis ("two.sided" or "less" or "greater")
• type= type of effect (“main”, “site”, or “variance”) with  main as default.  No tau00 

needed for main effect; no tau11 needed for site effect; no tau or f needed for variance 
effect

NOTE: here we show a 2 
arm example (treatment, 
control); to use a 3 arm 
design (treatment1, 
treatment2, control), use 
wp.mrt3arm

Effect size calculation

• 𝑓 = Τ𝜇𝐷 𝜎2

• 𝜇𝐷=mean difference between 
treatment and control clusters

• 𝜎2=sample-specific variance



Multilevel Modeling: Multisite Randomized Trials
Results:

> #MRT sample size (number per cluster)
> wp.mrt2arm(f=0.25, J=100, tau11=0.5, sg2=1.0, alpha=0.05, power=0.80, alternative="two.sided")
Multisite randomized trials with 2 arms

J                  n        f  tau11 sg2 power alpha
100  14.24177  0.25    0.5      1    0.8     0.05

NOTE: n is the number of subjects per cluster
URL: http://psychstat.org/mrt2arm
> 
> #MRT sample size (cluster number)
> wp.mrt2arm(f=0.25, n=15, tau11=0.5, sg2=1.0, alpha=0.05, power=0.80, alternative="two.sided")
Multisite randomized trials with 2 arms

J    n       f    tau11 sg2  power alpha
98.2174   15  0.25       0.5   1     0.8       0.05

NOTE: n is the number of subjects per cluster
URL: http://psychstat.org/mrt2arm

→ Round up to 15 individuals per cluster

→ Round up to 100 clusters (50 per arm)



Multilevel Modeling: Cluster/Site Size

• While the webpower documentation says it can 
be used for clusters or sites for 2+, it cannot be 
used for small cluster number unless effect size (f) 
is large enough and the inter correlation 
coefficient (icc) is low enough



Multilevel Modeling: Practice
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if a drug A could lower blood pressure for patients with 
hypertension using 50 hospitals across the county, separated by cluster.  From trial data, you 
found blood pressure to be lowered by 6.90, with a between-cluster variance of 58 and a 
within-cluster variance of 243. 

2. You are interested in determining if a drug B changes blood pressure for patients with 
hypertension using 6 hospitals the state, randomizing at each site.  From trial data, you 
found blood pressure to be different by 2.5, with a variance of treatment effect across site 
of 2 and a person-specific variance of 1.



Multilevel Modeling: Answers
Calculate the sample size for the following scenarios (with α=0.05, and power=0.80):

1. You are interested in determining if a drug A could lower blood pressure for patients with hypertension using 50 hospitals 
across the county, separated by cluster.  From trial data, you found blood pressure to be lowered by 6.90, with a between-
cluster variance of 58 and a within-cluster variance of 243. 
• Number of clusters (J) is 50

• One-tailed test -> “less”

• Effect size= 𝑓 = ൗ𝜇𝐷 (𝜎𝐵
2+𝜎𝑊

2 ) =6.90 / (58 + 243) = 0.40

• Inter-class correlation = 𝜌 = Τ𝜎𝐵
2 (𝜎𝐵

2+𝜎𝑊
2 ) = 58/(58+243)=0.19

• wp.crt2arm(f=0.40, J=50, icc=0.19, alpha=0.05, power=0.80, alternative="less")

• n =16.45-> 17 samples per cluster

2. You are interested in determining if a drug B changes blood pressure for patients with hypertension using 6 hospitals the 
state, randomizing at each site.  From trial data, you found blood pressure to be different by 2.5, with a variance of 
treatment effect across site of 2 and a person-specific variance of 1.
• Number of sites (J) is 6

• Two-tailed test -> “two.sided”

• effect size= 𝑓 = Τ𝜇𝐷 𝜎2=2.5/ 1 =2.5

• tau11= 2

• sg2= 1

• wp.mrt2arm(f=2.5, J=6, tau11=2, sg2=1, alpha=0.05, power=0.80, alternative="two.sided") 

• n =3.86-> 4 samples per site



Generalized Linear Mixed Models
Description: 

Combination of a Generalized Linear Model (GLM) and Mixed Model
• GLM: can be used with non-normal data
• Mixed Model: include both fixed and random effects

These models can be made very sophisticated and cover a very large range of 
models

• Need to understand how to create model and define variables
• Therefore, it requires a Module of their own
• Look for the second sample size module in R: Sample Size Calculation 

with R: GLMMs
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