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a b s t r a c t

Mapping aboveground forest biomass is of fundamental importance for estimating CO2

emissions due to land use and land cover changes in the Brazilian Amazon. However,

existing biomass maps for this region diverge in terms of the total biomass estimates

derived, as well as in the spatial patterns of mapped biomass. In addition, no regional

or location-specific measure of reliability accompanies most of these maps. In this study,

330 one-hectare plots from the RADAMBRASIL survey, acquired over and along areas adja-

cent to the state of Rondônia, were used to generate a biomass map over the entire region

using geostatistics. The RADAMBRASIL samples were used to generate a biomass map, along

with a measure of reliability for each biomass estimate at each location, using kriging with

external drift with elevation, vegetation type and soil texture considered as biomass pre-

dictor variables. Cross-validation was performed using the sample plots to compare the

performance of kriging against a simple biomass estimation using the sample mean. Over-

all, biomass varied from 225 to 486 Mg ha−1, with a local standard deviation ranging from

62 to 202 Mg ha−1. Large uncertainty values were obtained for regions with low sampling
density, in particular in savanna areas. The geostatistical method adopted in this paper

has the potential to be applied over the entire Brazilian Amazon region to provide more

accurate local estimates of biomass, which would aid carbon flux estimation, along with

measures of their reliability, and to identify areas where more sampling efforts should be

concentrated.

sions due to deforestation and forest degradation associated
. Introduction

here are several estimates of the spatial distribution of forest
iomass in the Amazon. These estimates, however, diverge in
erms of the total biomass reported and in the identification of

ites with high and low biomass concentration (Houghton et
l., 2001). Additionally, none of the methods used for estimat-
ng the spatial distribution of forest biomass in the Amazon
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explicitly incorporate the spatial correlation of biomass in
their models or are accompanied by measures of reliability.
Precise estimates of forest biomass spatial distribution are
important for reducing uncertainty in estimating carbon emis-
azônia, Imazon, Caixa Postal 5101, Belém, PA 66613-397, Brazil.

with selective logging and fires (Houghton, 2005).
The methods used for estimating spatial distribution of

forest biomass in the Amazon may be classified into two
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groups. Methods in the first group employ interpolation or
extrapolation of biomass estimates obtained in the field for
extensive regions, whereas methods in the second group esti-
mate biomass from remote sensing and environmental model
data. As an example of the first group of methods, volume
data from the RADAMBRASIL project were converted into total
biomass, using conversion equations from Brown and Lugo
(1992) and Fearnside (1997), and extrapolated based on vege-
tation types (Houghton et al., 2001). Another example of this
group of methods was a biomass map for the Amazon, gener-
ated via interpolation from biomass measurements obtained
at only 56 sites (Houghton et al., 2000). Examples of map prod-
ucts produced via the second group of methods are biomass
estimates obtained through NDVI (Normalized Difference Veg-
etation Index) and models of NPP (Net Primary Production)
(Potter, 1999).

In this paper, we present a promising approach, based
on geostatistics, for overcoming the major problem of for-
est biomass estimates in the Brazilian Amazon: the lack
of explicit spatial information in the interpolation models.
To this respect, we modeled the spatial variability of tim-
ber volume with a semi-variogram analysis utilizing 330
1 ha forest inventory plots from the RADAMBRASIL project,
for the state of Rondônia. Next, we utilized the parame-
ters of the semi-variogram model in a kriging algorithm
with external drift, to estimate the spatial distribution of
the timber volume together with a reliability measure of the
estimated value for each location. Finally, we applied conver-
sion factors from Brown and Lugo (1992) and from Fearnside
(1997), to convert the timber volume estimates obtained with
the kriging algorithm to forest biomass, and compared the
results.

2. Spatial interpolation

Spatial interpolation consists of generating estimates for
unsampled sites based on known values from samples col-
lected in the vicinity. Throughout the text, we will refer to the
coordinate vector of each location using the letter s, to the
value of the variable of interest at that location as z(s) and to
the ith sample datum as z(si). The estimated value for the vari-
able of interest Z at any unsampled location will be referred
to as ẑ(s), while the samples located in the vicinity of s will be
referred to as z(si), i = 1, . . ., n.

In linear spatial interpolation, the unknown value z(s) of
the variable of interest at an unsampled location is esti-
mated by ẑ(s) as a linear combination of the nearby samples,
using:

ẑ(s) =
n∑

i=1

wi(s)z(si) (1)

where each sample z(si), located near the location s, receives
a weight factor w (s) which reflects the importance of the
i

sample z(si) for estimating the unknown value at location
s. There are various types of interpolators. With most, it is
assumed that samples closest to location s are more impor-
tant than more distant samples for determining the value z(s).
2 0 5 ( 2 0 0 7 ) 221–230

What differentiate them are the rules for attributing weights
to the sample data. A review of various interpolation meth-
ods may be found in other papers (e.g., Caruso and Quarta,
1998).

2.1. Kriging with external drift (KED)

Geostatistics is a branch of statistics that explicitly incor-
porates the concept of spatial correlation in the analysis of
spatial data (Isaaks and Srivastava, 1989; Goovaerts, 1997).
In the field of ecology and forest management, examples of
geostatistical applications include modeling the spatial dis-
tribution of tree diameters (Nanos and Montero, 2002), and
estimating timber stocks and diameter increments (Biondi et
al., 1994).

In geostatistics, the unknown value z(s) at any location is
typically decomposed into a mean (drift) component m(s) and
a residual component r(s):

z(s) = m(s) + r(s) (2)

Different kriging variants can be distinguished according
to whether the mean component m(s) is assumed con-
stant or spatially variable (Goovaerts, 1997). When the mean
component is constant and unknown m(s) = m, ordinary krig-
ing is the procedure for estimating the unknown value at
any unsampled location s. Alternatively, the mean compo-
nent can be modeled as spatially variable by expressing it
as a function of auxiliary variables (predictors) that vary
in space. For example, one can adopt the following linear
function:

m(s) =
A∑

a=0

baxa (s) (3)

where xa(s) represents the value of the ath external variable at
location s, and ba denotes the regression coefficient associated
with that external variable; by convention b0 = 1.

The residuals are typically assumed spatially auto-
correlated, with zero mean, and covariance function
CR(h) = CR(s − s′), where h denotes the separation vector
between any two locations s and s′. Any covariance model
must be positive-definite, and various known functions
have this characteristic (e.g., Isaaks and Srivastava, 1989;
Goovaerts, 1997; Gringarten and Deutsch, 2001). Once the
functional form of the covariance model (e.g., spheri-
cal or exponential) is postulated, its parameters (relative
nugget, sill and range) are usually inferred using non-linear
least squares or maximum likelihood (Chilès and Delfiner,
1999).

The estimated value z(s) at any unsampled location is com-
puted using Eq. (1), subject to the following unbiasedness
constraints on the kriging weights:

n∑

i=1

wi(s)xa(si) = xa(s), a = 0, . . . , A (4)

where xa(si) represents the value of the ath external variable
collected at the ith sample location.
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The associated kriging weights are finally obtained
s:

w1(s)

...

wn(s)

−�0(s)

...

−�A(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CR(s1 − s1) · · · CR(s1 − sn) 1 · · · xA(s1)

...
...

...
...

...
...

CR(sn − s1) · · · CR(sn − sn) 1 · · · xA(sn)

1 · · · 1 0 · · · 0

...
...

...
...

...
...

xA(s1) · · · xA(sn) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

here �A(s) denotes the Lagrange parameter associated with
he Ath unbiasedness constraint on the weights (Goovaerts,
997). The term CR(sn − s1) denotes the residual covariance
etween two sample locations sn and s1, whereas the term

R(sn − s) denotes the residual covariance between the nth
ampled location sn and the unsampled location s. It should
e noted that KED reduces to classical OLS regression if the
patial autocorrelation in the residuals is negligible. An impor-
ant detail in the application of KED is that it requires the
nowledge of the residual variogram model. In this work,
e estimated a variogram model from the residuals obtained

rom an aspatial linear regression model, as described in Sec-
ion 3.

Last, the associated minimum error variance at an unsam-
led location s is given by:

ˆE(s) = �R −
n∑

i=1

wi(s)CR(si − s) +
A∑

a=0

�a(s)xa(s) (6)

here �R denotes the a prior (not conditional to nearby data)
ariance of the residual component.

The kriging estimates and associated variance values
erived from the above equations account for both the aux-

liary variables and the spatial correlation in the residuals.
riging with external drift is essentially a spatial (or gen-
ralized) linear regression model (Chilès and Delfiner, 1999),
nd offers a convenient means for incorporating additional
ata into spatial interpolation, while reporting the associated
ncertainty in the resulting predictions.

. Methodology

.1. Study area

he State of Rondônia is located in the southwestern Ama-
on between latitude 8◦ and 15◦S, and longitude 60◦ and 65◦W
Fig. 1). The annual rainfall rate is 2600 mm year−1, with the
ainy season lasting from November to April (Brown et al.,
995). The elevation varies from flat soils to undulating terrain
etween 80 and 140 m above sea level, and the predominant
oil types are red-yellow latosols and red-yellow lithic podzols
Holmes, 2003). The dominant vegetation is open moist trop-

cal forests, with the presence of palms and lianas (DNPM,
978). The state is characterized by having a history of high
eforestation rates (INPE, 2003; Roberts et al., 2002). From 1994
o 2004, 12% of Rondônia was deforested, which makes the
5 ( 2 0 0 7 ) 221–230 223

R(s1 − s)

...

R(sn − s)

1

...

xA(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

state one of the major carbon emitters due to deforestation.
Deforestation in the state is principally caused by the activities

of small farmers, ranchers, and mining and timber companies
(Pedlowski et al., 1997).

3.2. Data base

We used the volume data from a subset of forest invento-
ries from the RADAMBRASIL project (DNPM, 1978) collected
in 1-ha plots. The subset used is made up of all of the sam-
ples located within the state of Rondônia with a buffer of
100 km around it (Fig. 1). Plots from outside of the state were
included because they are important for calculating estimates
at locations near its boundaries. According to RADAMBRASIL’s
reports, the sampling design was a stratified random sampling
limited by accessibility. The same report states that in some
cases, samples were intentionally located to ensure that the
maximum number topographical profiles possible were cov-
ered. Thus, we assumed that the data set was representative
of the variability of wood volume over the study area.

The RADAMBRASIL forest type and soil maps were uti-
lized as explanatory variables, because they show evidence
of a relationship to forest biomass (Laurance et al., 1999;
Houghton et al., 2001). We also included terrain elevation data
generated by the Shuttle Radar Topographic Mission (SRTM)
(http://srtm.usgs.gov/) with 90 m resolution as an explanatory
variable. All of the maps were resampled to a 1 km resolution.

3.3. Volume spatial distribution modeling

The stages of modeling and calculation of the biomass esti-
mates for Rondônia are summarized in Fig. 2. We first used
the explanatory variables to establish the mean component
of timber volume at sample locations. We used this model
to compute sample residuals and then modeled their spatial
variability via variogram analysis. We finally used the explana-
tory variables at all locations in kriging with external drift
to interpolate timber volume at a 1 km grid over the state of
Rondônia, as described in Section 2. Finally, we converted the
tree volume from the forest inventories into biomass using
conversions from Brown and Lugo (1992) and Fearnside (1997).
The conversion details are presented in Section 3.5.

More precisely, the mean m(s) at any location was specified

using the following linear model:

m(s) = b0 + bT
1 florst(s) + bT

2 solo(s) + b3SRTM(s) + bT
4 florst(s)

×SRTM(s) + bT
5 solo(s) × SRTM(s) (7)

http://srtm.usgs.gov/
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MBR
Fig. 1 – Study area and location of RADA

where florst(s) and solo(s) are column vectors of binary val-
ues representing the vegetation type and soil texture classes,
respectively, at location s. The term SRTM(s) represents ter-
rain elevation—the only continuous predictor variable. The
terms florst(s) × SRTM(s) and solo(s) × SRTM(s) represent the
interaction between forest type and elevation, and between
soil texture and elevation, respectively. Therefore, except
for b3, all bs are vectors of regression coefficients match-
ing each column vector of binary variables in Eq. (7). For
example, the term bT

1 florst(s) is the vector notation for
the sum b11florst(s)2 + b21florst(s)3 + b31florst(s)4 + b41florst(s)5,
where each florst(s)i is 0 or 1 depending on the forest type in
location s. The regression coefficients were estimated using
ordinary least squares (OLS). Detailed explanation on this clas-
sical regression approach can be found in the literature (e.g.,
Draper and Smith, 1998).

The residuals were then obtained using r(si) = z(si) − m̂(si),
i = 1, . . ., n, which supplies the differences between the sample
data and the estimated mean component at the sample loca-
tions. Next, to model the spatial variability of the residuals,
we first calculated experimental variograms of the resulting
residuals along four different directions to assess the possi-
ble existence of anisotropy (the phenomenon in which the
variogram behavior depends on direction). No anisotropy was
detected, however, and we thus considered only the omni-
directional experimental residual variogram.
Next, a positive-definite variogram model (with nested
structures) was selected based on its average squared error
in adjusting the residuals between that model and the sample
variogram values. For more details on positive-defined mod-
ASIL forest surveys used in this study.

els, see Gringarten and Deutsch (2001). We used weighted least
squares with the number of samples in each distance class
as weights, to determine the parameters of the nested struc-
ture: the nugget effect, partial sills and ranges. The nugget
effect is a discontinuity at the origin of the variogram, gener-
ally attributed to small scale variability or measurement error.
A sill is a variance value that bounds the variogram of the vari-
able, while the range is the distance at which the variogram
reaches the sill. It should be noted here that a somewhat more
general (but computationally more demanding) approach to
residual variogram fitting is maximum likelihood (typically
Gaussian) fitting. This latter method is often advocated due
to the experimental variogram of the residuals being biased,
particularly at large lag distances. We did not opt for this
method in this work, due to the relative robustness of krig-
ing with respect to variogram model misspecification. Future
work will address this issue in a more robust way. For more
details on variogram fitting procedures, one can consult Chilès
and Delfiner (1999).

Once the residual variogram was modeled, the next step
was to obtain the weights for kriging with external drift at
each grid cell using Eq. (5). To do this, we used the residual
variogram model and the elevation, forest type and soil texture
values. Finally, we utilized the resulting weights in Eq. (1) to
compute the volume estimate at each grid cell.
3.4. Conversion of timber volume to biomass

The volume maps obtained by kriging were converted into
total biomass maps by applying two methodologies for con-
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Fig. 2 – Methodology used for modeling residual spatial correlation and estimating forest biomass spatial distribution in
Rondônia.
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erting volume to biomass: that of Brown and Lugo (1992),
odified by Houghton et al. (2001), and that of Fearnside

1997). Fearnside’s conversion includes additional compo-
ents of biomass not included in Brow and Lugo’s. We applied
oth methods to evaluate which one is most appropriate,
ased on the range of biomass estimates observed in the lit-
rature. The Brown and Lugo equation (1992), modified by
oughton et al. (2001), is given by:
GB(BL) = SB × BEF × (1 + (0.09 + 0.21)) (8)
where SB is the stem-wood biomass, and is given by:

SB = Volume × VEF × WD (9)

with VEF (Volume Expansion Factor) being the correction fac-
tor for including trees below a diameter of less than 30 cm of
DBH (define DBH) and WD being wood density. All of the above
terms pertain to local values, but we have dropped the depen-

dence on the coordinate vector s for notational simplicity. We
used VEF = 1.25 for dense forest, and 1.50 for all other vegeta-
tion types. The value used for WD was assigned as 0.69 Mg m−3

for all forests, and 0.404 Mg m−3 for savannas, as suggested
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where they found that the clay gradient for soils is the soil
variable with the greatest explanatory power for determining
forest biomass. Similarly, the interaction between vegetation
type and elevation for the classes of open and dense moist

Table 1 – Results of the aspatial regression model for
volume

Predictor variables Coefficients Standard
deviation

Soil texture
Sandy (omitted class) –
Indiscriminate −18.715 20.090
Clay-rich −4.0110 15.132

Forest type
Stacional forests (omitted class) –
Ombrophyle open forests 53.715 20.842
Ombrophyle dense forests 64.956 21.404
Pioneers 23.484 51.351
Savannas 40.938 36.044

Elevation 0.108 0.084

Interaction: elevation × soil texture
Indiscriminate—elevation 0.143 0.085
Clay—elevation 0.151 0.068

Interaction: elevation × forest type
Ombrophyle open—elevation −0.262 0.077
226 e c o l o g i c a l m o d e l l

by Barbosa and Fearnside (2004). The value of BEF (Biomass
Expansion Factor) in Eq. (7) is utilized to compensate for the
difference in stem biomass between small and large trees, and
was given by:

BEF = exp(3.213 − 0.506 ln(SB)), if SB < 190,

BEF = 1.74, if SB > 190 (10)

In Eq. (8), SB × BEF is the conversion of volume to aboveground
biomass originally proposed by Brown and Lugo (1992). The
constants 0.09 and 0.21 in the formula were introduced by
Houghton et al. (2001) to include belowground biomass and
dead aboveground biomass.

Fearnside (1997) suggested the following modification in
Brown and Lugo’s equation (1992):

AGB(Fs) = SB × BEF × (1 + CF) (11)

where CF = 96.2%, which represents the sum of various correc-
tion factors (lianas = 5.3%, trees smaller than 10 cm DBH = 12%;
tree form factor = 15.6%; for trees between 30 and 31.8 cm
DBH = 3.6%; hollow trees = −6.6%; bark = −0.9%; palms = 2.4%,
belowground biomass = 33.6%; dead aboveground biomass
soil = 31%; and other components = 0.2%).

In this paper, the correction factors from Eqs. ((8)–(11))
were assumed constant, i.e., not spatially variable. Therefore,
the biomass estimates and the standard deviations of the
associated prediction errors were obtained by multiplying the
correction factors by the volume estimates and the associated
prediction error standard deviation maps, respectively.

3.5. Validation

We applied cross-validation to assess the performance of krig-
ing in estimating the spatial distribution of timber volume in
relation to the estimates obtained using a simple sample aver-
age. Cross-validation is an iterative process where for each
step a sample is hidden from the data set and the others
are used for generating an estimate for the excluded sam-
ple value. This process is repeated for each sample, and the
cross-validation error z(si) − ẑ(si) is estimated at each sam-
ple location si. We utilized the root mean squared error as a
performance assessment criterion for the two methods, given
by:

RMSEK =

√√√√√√
n∑

i=1

[z(si) − ẑK(si)]

n

2

(12)

RMSEA =

√√√√√√
n∑

i=1

[z(si) − ẑA(si)]

n

2

(13)
where ẑK(si) denotes the kriging estimate and ẑA(si) denotes
the sample average estimate at each location (note that the
latter is constant within each search neighborhood).
2 0 5 ( 2 0 0 7 ) 221–230

The quantity (RMSEA − RMSEK)/RMSEA was used to assess
the relative reduction of the estimation error RMSEK obtained
by kriging in relation to the error RMSEA obtained by simple
averaging.

4. Results

4.1. Residuals and variogram analysis

Table 1 shows the OLS-derived coefficients of the regression
model in Eq. (7) and their respective standard errors. The
regression coefficients for the indeterminate and clay-rich soil
texture classes show negative values, suggesting that sandy
soils accumulate more volume than the indeterminate and
clay-rich classes (Table 1). The interaction between terrain ele-
vation and soil texture presents positive coefficients for the
indiscriminate and clay-rich classes, which means that for
higher elevations, more clay-rich soils accumulate more vol-
ume. When the other variables of the model are kept constant,
the model returns higher estimates of volume in clay-rich soils
than in sandy soils at elevations greater than 27 m, which rep-
resents a larger portion of the state. The same holds true for
indiscriminate soils, beginning at an elevation of 135 m (80% of
the state). This result is in line with what was expected, given
that clay-rich soils have a higher capacity for retaining nutri-
ents than sandy soils. This result is also in agreement with
the results found by Laurance et al. (1999), in a study of the
relation between soils and biomass in the central Amazon,
Ombrophyle dense—elevation −0.266 0.088
Pioneers—elevation −0.248 0.264
Savannas—elevation −0.181 0.126

Intercept 66.171 22.204
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ig. 3 – Omni-directional sample residual variogram and
arameters of the fitted model.

ropical forest are associated with negative coefficients, indi-
ating that the volume in these areas is less in higher elevation
reas. The model yields greater volume estimates for seasonal
orests than for open and dense moist forests beginning at
ltitudes of 208 m (36%) and 250 m (23%), respectively.

The directional variograms of the residuals did not show
strong pattern of anisotropy, and consequently we consid-

red an isotropic model for the spatial variability of residual
imber volume resulting from the application of Eq. (7). To
o this, we adjusted a composite variogram function com-
rised of a nugget component, a Gaussian structure and a
pherical structure to fit the sample residual variogram. The
nal omni-directional variogram for residual timber volume

s shown in Fig. 3, and presents a total range of 300 km, and
n estimated relative nugget of only 4%. This implies that the
esidual timber volume has a strong spatial correlation. The
ariogram model indicates that the spatial correlation of resid-

al volume decreases rapidly with distance of up to 100 km,
here the variogram reaches 60% of the sill under Gaussian
ehaviour and that correlation decreases more slowly up to
he 300 km limit, and is almost zero after this distance. Nev-

Fig. 4 – Volume estimates
5 ( 2 0 0 7 ) 221–230 227

ertheless, we retained all samples in the neighborhood of the
entire variogram range of 300 km, in the computation of the
estimates.

4.2. Kriging

Fig. 4 shows the maps of timber volume estimates and their
standard error. The estimated timber volume varied from 50
to 150 m3/ha (1st and 99th percentiles), with standard error
varying from 18 to 43 m3/ha. The discontinuous aspect of the
maps of the external or predictor variables used to build the
mean component resulted in a predominantly discontinuous
behavior for the volume and standard error maps, mainly in
regions with low sampling density, such as the extreme north
of the state (Fig. 4). In some regions, however, it is possible
to perceive a more continuous behavior, mainly in the uncer-
tainty map, which is a result of the residual variogram model;
this effect is most visible at locations with greater sampling
density. The standard error estimates were high in savanna
areas, which are low sampling density regions in the RADAM
samples.

Fig. 5 presents the maps of total biomass and their standard
error, resulting from application of the equations of Brown and
Lugo and Fearnside, described in Section 3.4. With the Brown
and Lugo equation, biomass estimates in Rondônia varied
from 225 to 486 Mg ha−1 (1st and 99th percentiles), with stan-
dard error varying from 62 to 202 Mg ha−1. According to the
Fearnside equation, biomass varied from 340 to 733 Mg ha−1,
with standard error varying from 94 to 306 Mg ha−1. The
Fearnside corrections resulted in a 62% increment in rela-
tion to estimates obtained using the Brown and Lugo’s (1992).
Although the Fearnside corrections (1997) included several
components not considered by Brown and Lugo (1992), the
latter generated estimates much closer to those found in the
literature for different types of forest in the Amazon; see, for
example, Laurance et al. (1999), Houghton et al. (2001), and
Cummings et al. (2002).
4.3. Validation

Table 2 shows the RMSE values obtained from the cross-
validation procedure. The accuracy of the methods varied as

and standard errors.
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ates
Fig. 5 – Biomass estim

a function of the sampling density. Fig. 6 shows the relative
reduction in RMSE for kriging with external drift in relation to
simple averaging, according to the number of samples located
within a 300 km radius from any estimation location. The
model does not reduce RMSE in locations with less than 50
samples in a radius of 300 km. But for locations with more than
110 samples within this distance radius, the reduction rises
to approximately 27%. This effect may have been caused by
errors in the coordinates, since, as seen previously, the spatial

variability model adopted for residual volume attaches great
importance to samples located near the estimation location.
Thus, small errors in the coordinates of these samples may
generate significant errors in the estimates. However, a large

Table 2 – RMSE using the sample average and the kriging predi
300 km from prediction locations

Method

N > 0 (any sample size) N > 30 samples N > 50 s

Kriging 48.06 48.06 48.
Simple mean 48.79 48.79 48.
and standard errors.

number of samples – so long as they are not clustered – means
that smaller weights will be given to all the samples. This
implies that the estimated value at each location is comprised
of small contributions from samples at different locations,
canceling the error effect due to coordinate misspecification.
The graph of Fig. 6 suggests a growing rate of error decrease
starting with 110 samples in a radius of 300 km, but the data
were not sufficient to observe at which point this rate would
stabilize. This result implies that our method significantly

improves estimates for a sample intensity beyond 110 sam-
ples for each 300 km, what is equivalent to a sample intensity
of approximately one 0.36 ha/km2, or a sampling intensity of
approximately 0.36%.

ction within each neighborhood by sample size within

RMSE

amples N > 70 samples N > 90 samples N > 110 samples

02 46.35 41.81 35.40
79 48.79 48.79 48.79
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Houghton, R.A., Lawrence, K.T., Hackler, J.L., Brown, S., 2001. The
spatial distribution of forest biomass in the Brazilian Amazon:
ith simple averaging, by sample size within a 100 km
adius from prediction locations.

. Discussion and conclusions

orest biomass spatial distribution estimation for Amazônia
s important to derive more accurate rates of carbon emission
ue to deforestation. Here, we provide a promising approach
o improve the carbon emission estimates of this region using
eostatistics. We found through variogram analysis that 96%
f the variation in residual volume is spatially structured,
hat correlation being most significant up to a distance of
00 km. This implies that geostatistical methods are more
ppropriate for generating estimates of biomass distribution
han the use of simple average or statistical models that ignore
patial correlation. In Rondônia, biomass values obtained
rom volume estimates derived by kriging, varied from 225
o 486 Mg ha−1 using the Brown and Lugo corrections and
rom 340 to 733 Mg ha−1 using the Fearnside corrections; the
stimates generated by the first method were more similar
o results from field measurements in the Amazon. Forest
iomass in the state is more concentrated in the region to the
orth, where there is a predominance of open forests in clay-
ich soils. The uncertainty maps reveal that a greater sampling
ffort is needed for estimating forest biomass accurately in
avanna and pioneer forest regions in the state.

The methods applied in this study may be used for gener-
ting estimates for the spatial distribution of forest biomass
nd its uncertainty for the entire Amazon. As already stated,
uch maps have the potential for improving estimates of
arbon flow to the atmosphere as a result of deforestation,
hich are frequently computed using only data of the annual

rea of deforested forests combined with estimates of average
iomass per hectare in the region (Houghton, 2005), ignoring
egional fluctuations and trends of forest biomass in the defor-
sted areas. The use of such maps, together with detailed
nformation on the spatial profile of deforested areas may
mprove estimates of carbon emissions, principally in defor-
sted regions whose biomass concentration is quite different
rom the average (Houghton, 2005). Additionally, the uncer-
ainty map offers a means for evaluating the reliability of

stimates, allowing the identification of regions with major
ncertainties to prioritize data collection or apply other means

or estimating biomass.
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Biomass estimation in the Amazon is still hindered by
barriers that must be overcome. The scarcity of data is still
one of the largest of these barriers. In this paper, we track
one of the potential sources of errors in biomass estimation
by explicitly accounting for the spatial variability of timber
volume in interpolation models. Uncertainties derived from
field measurements and the application of the biomass con-
version factors were not taken into account. Consequently,
there is a great need to understand the uncertainty related
to the different correction factors applied, which are averages
extrapolated to the entire Amazon, derived from data of only
a few and small regions. The use of other continuous predic-
tor variables such as fraction images derived from remotely
sensed optical imagery could improve the performance of the
methodology presented here.
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