Case-study: Rongelap Island

This case-study illustrates a model-based geosta-
tistical analysis combining:

e a Poisson log-linear model for the sampling dis-
tribution of the observations, conditional on a
latent
Gaussian process which represents spatial vari-
ation
in the level of contamination

e Bayesian prediction of non-linear functionals of
the latent process

e MCMC implementation
Details are in Diggle, Moyeed and Tawn (1998).
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Radiological survey of Rongelap Island

e Rongelap Island

— approximately 2500 miles south-west of
Hawaii

— contaminated by nuclear weapons testing du-
ring 1950’s

— evacuated in 1985
— now safe for re-settlement?
e The statistical problem
— field-survey of *"Cs measurements

— estimate spatial variation in *"Cs radioacti-
vity

— compare with agreed safe limits
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Poisson Model for Rongelap Data

e Basic measurements are nett counts Y, over
time-intervals ¢; at locations z; (i = 1,...,n)

e Suggests following model:

. S(x) : x € R? stationary Gaussian process
(local radioactivity)

- Yi[{5(+)} ~ Poisson(z;)
- i = A (@) =t exp{S(ai) .
e Aims:
- predict A(x) over whole island
- max A\(x)

- arg(max A\(z))
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Predicted radioactivity surface using log-
Gaussian kriging
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Predicted radioactivity surface using Pois-
son log-linear model with latent Gaussian
process
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e The two maps above show the difference
between:

— log-Gaussian kriging of observed counts per
unit time

— log-linear analysis of observed counts

e the principal visual difference is in the extent
of spatial smoothing of the data, which in turn
stems from the different treatments of the nug-
get variance
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Bayesian prediction of non-linear functio-
nals of the radioactivity surface

The left-hand panel shows the predictive distribu-
tion of maximum radioactivity, contrasting the ef-
fects of allowing for (solid line) or ignoring (dotted
line) parameter uncertainty; the right-hand panel
shows 95% pointwise credible intervals for the pro-
portion of the island over which radioactivity exce-
eds a given threshold.

Intensity level Intensity level
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e The two panels of the above diagram illustrate
Bayesian prediction of non-linear functionals of
the latent
Gaussian process in the Poisson log-linear mo-

del

e the left-hand panel contrasts posterior distribu-
tions of the maximum radioactivity based on:
(1) the fully Bayesian analysis incorporating the
effects of parameter uncertainty in addition to
uncertainty in the latent process (solid line)

(i1) fixing the model parameters at their estima-
ted values, ie allowing for uncertainty only in
the latent process

e the right-hand panel gives posterior estimates
with 95% point-wise credible intervals for the
proportion of the island over which radioactivity
exceeds a given threshold (dotted line).
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Case-study: Gambia malaria

e In this example, the spatial variation is of se-
condary scientific importance.

e The primary scientific interest is to describe
how the prevalence of malarial parasites de-
pends on explanatory variables measured:

— on villages

— on individual children

e There is a particular scientific interest in
whether a vegetation index derived from satel-
lite data is a useful predictor of malaria preva-
lence, as this would help health workers to de-
cide how to make best use of scarce resources.
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Data-structure

e 2039 children in 65 villages

e test each child for presence/absence of malaria
parasites

Covariate information at child level:

e age (days)
e sex (F/M)

e use of mosquito net (none, untreated, treated)

Covariate information at village level:

e location
e vegetation index, from satellite data

e presence/absence of public health centre
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Logistic regression model

Logistic model for presence/absence in each child:

e Y;; = 0/1 for absence/presence of malaria para-
sites in jth child in ith village

e f;; = child-specific covariates
e w,; = village-specific covariate

o logitP(Y;; = 1|5(-)) = z'/jﬁl +wy'Ba + S(x;)

Is it reasonable to assume conditionally indepen-
dent infections within same village?

If not, we might wish to extend the model to allow
for non-spatial extra-binomial variation:

o Uz ~ N(O, V2)

o logitP(Y;; =1|5(-),U) = Z-/j51 + w By + U; + S(x;)
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Exploratory analysis

e fit standard logistic linear model, ignoring S(x)
and/or U

e compute for each village:

Ni = Z}L Yij
i = 2?1:1 PZJ

e compute village-residuals, r; = (N; — ;) /0;

e apply conventional geostatistics to derived data
T

e variogram indicates residual spatial structure
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Variogram of residuals

semi-variance
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Model-based geostatistical analysis

a = intercept term in linear predictor

(1 = regression coefficient for age

B2 = regression coefficient for bed-net use

(3 = regression coefficient for treated bed-net

(4 = regression coefficient for green-ness index

(5 = regression coefficient for presence of public he-
alth centre in village

2

2

o“ = variance of spatial process S(z)

v- = variance of non-spatial random effects U,

¢ = rate of decay of spatial correlation with dis-

tance

x = shape parameter for Matérn correlation func-

tion

Param.| 2.5% Qt. | 97.5% Qt. | Mean Median
o -4.232073 | 1.114734| -1.664353 | -1.696228
B4 0.000442| 0.000918 0.000677| 0.000676
s -0.684407 | -0.083811 | -0.383750|-0.385772
B3 |-0.778149| 0.054543| -0.355655|-0.355632
By 1-0.039706| 0.071505| 0.018833| 0.020079
Bs -0.791741| 0.180737| -0.324738|-0.322760
V? 0.000002| 0.515847 0.117876| 0.018630
o’ 0.240826| 1.662284 0.793031| 0.740790
0 1.242164 | 53.351207 | 11.653717 | 7.032258
K 0.150735| 1.955524  0.935064 | 0.830548

e note concentration of posterior for »? close to

Zero
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Map of the predicted surface S(z)
(posterior mean)
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Posterior density estimates for S(z) at two se-
lected locations.
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e solid curve — remote location (452, 1493),

e dashed curve — location (520, 1497), close to ob-
served sites in central region.
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Empirical posterior distributions for regres-
sion parameters
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e 5, = effect of age
e (3, = effect of untreated bed-nets

e 73 = additional effect of treated bed-nets
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Goodness-of-fit for Gambia malaria model
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Fitted value

Village-level residuals against fitted values.

® 7= (Y}j - ﬁz‘j)/\/{ﬁijﬂ - ﬁij)}
o, = er/\/nz

e intended to check adequacy of model for p;;

106



2.5
|

Variogram
15

Distance (km)

Standardised residual empirical variogram plot (village-level
data and pointwise 95% posterior intervals constructed from
simulated realisations of fitted model).

®Tij = ( ng)/\/{pz]< ﬁ;kj>}
=2 T/ VN
° logitpjj = o+ Z-’jB + S(ml)

e intended to check adequacy of model for S(x)
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