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Since the failure of scan-line corrector (SLC) of the Landsat 7 Enhanced Thermal Mapper Plus (ETM+) sensor,
a number of methods have been developed to fill the un-scanned gaps in ETM+ images. Unfortunately, the
quality of the images filled by most of these existing methods is still not satisfactory, particularly in
heterogeneous regions. Recently, a Neighborhood Similar Pixel Interpolator (NSPI) was developed that can
accurately fill gaps in SLC-off images even in heterogeneous regions. However, the NSPI method is a type
of deterministic interpolation approach that sets its weight parameters empirically and cannot provide
statistical uncertainty of prediction. This study proposes a new gap-filling method called Geostatistical
Neighborhood Similar Pixel Interpolator (GNSPI) by improving the NSPI method using geostatistical theory.
The simulation study shows that: compared with previous geostatistical methods, the image filled by GNSPI
has fewer striping effects; compared with NSPI, GNSPI is less empirical in its weight parameters and can
provide uncertainty of prediction. More importantly, it can generate more accurate results than NSPI,
especially when there is a long time interval between the input auxiliary image and the target SLC-off image.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Since its first launch in 1972, Landsat satellite series has been
continuously collecting images of the Earth from space (Goward
et al., 2006). This longest archive of global mid-resolution, highly
calibrated, multispectral data is a unique resource for applications at
various scales, such as land use/cover mapping (Fuller et al., 1994),
change detection (Byrne et al., 1980; Liu & Cai, 2011), ecosystem
dynamics monitoring (Fisher et al., 2006; Masek et al., 2008), as
well as biogeochemical parameter estimation (Cohen & Goward,
2004). Currently, the Thematic Mapper (TM) sensor on board Landsat
5 has substantially exceeded its planned design life (Bédard et al.,
2008) and has unfortunately been halted since November 2011
(USGS, 2012). The Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) sensor was the successor of TM. However, on May 31st,
2003, the scan-line corrector (SLC) of ETM+ failed permanently,
which caused roughly 22% of the pixels to be un-scanned in any
ETM+ images (referred to as SLC-off images) (Arvidson et al.,
2006). More seriously, the width of these wedge-shaped data gaps in-
creases the further east or west from the nadir path, resulting in large
missing areas toward the edges of the scene, which leaves a major
problem for the applications of ETM+ images. Therefore, filling gaps
in SLC-off ETM+ images is very crucial and necessary to ensure the
continuity of this longest satellite observation. In addition, even if
rth Oval Mall, Columbus, OH
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Landsat 5 could be recovered before the launch of LDCM (Williams
et al., 2006), the filled ETM+ images can be a valuable supplement
of Landsat 5 TM to increase the availability of data in the frequently
cloudy regions (Ju & Roy, 2008).

After the failure of SLC, many methods have been developed to fill
the data gaps. These methods can be generally divided into two
categories: deterministic interpolation and geostatistical interpola-
tion. The difference between these two categories is that determinis-
tic interpolation methods predict un-scanned pixels based on some
empirically specified mathematical formulas, while geostatistical
interpolation methods incorporate some kind of randomness in
the prediction based on the statistical properties of the image. The
first deterministic interpolation approach was proposed by a joint
United States Geological Survey/National Aeronautics and Space
Administration (USGS/NASA) Landsat team, referred to as local linear
histogram-matching method (USGS, 2004). The linear histogram-
matching method uses a moving window to get the localized linear
transform function and then converts the pixel value of input auxiliary
scenes to fill un-scanned gaps. This method requires that input scenes
have minimal clouds, snow cover, low temporal variability and mini-
mum date separation (USGS, 2004), which is not practical in some
cloudy regions. As an alternative, MODIS images are used to predict
the SLC-off ETM+ images by a semi-physical fusion approach (Roy et
al., 2008). In addition, Maxwell (2004) introduced an object-based
segmentation model to fill the gaps by using same-scene pixels outside
the gaps, and this approach was further evaluated for land cover classi-
fication (Bédard et al., 2008). Then, this object-based segmentation
approach was further improved by using multi-scale segmentation
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(Maxwell et al., 2007). Although the above methods are demonstrated
to be effective to fill the missing pixels in SLC-off images in some case
studies, they cannot ensure the accuracy of predictions in heteroge-
neous landscapes, and they have failed to predict small or narrow ob-
jects (Maxwell, 2004; Maxwell et al., 2007; Roy et al., 2008; USGS,
2004). To improve the accuracy of gap filling in heterogeneous land-
scape areas, Chen et al. (2011) recently proposed a Neighborhood Sim-
ilar Pixel Interpolator (NSPI) approach to interpolate the gaps. NSPI
makes use of the neighboring pixelswith similar spectral characteristics
to predict the value of un-scanned pixels, and it integrates spatial and
temporal information of input images. Because of these two properties,
NSPI can get more accurate results for small and narrow landscape fea-
tures than the previous deterministic approaches (Chen et al., 2011).
However, NSPI still has some limitations. As a deterministic approach,
NSPI cannot produce the uncertainty of predictions, and the impact of
changes between input and target images on the final results is not
clear (Chen et al., 2011). In addition, the weight parameters in NSPI
are empirically determined by spatial and spectral distances, which
may affect their robustness in application for various situations.

For geostatistical methods, ordinary kriging and co-kriging
techniques were employed to fill the data gaps (Pringle et al., 2009;
Zhang et al., 2007). These geostatistical methods can provide the
uncertainty of predictions, which is a significant difference with the
deterministic methods. The fundamental idea of geostatistics is
Tobler's first law of geography, i.e., near spatial data values are more
related to each other than distant data values (Tobler, 1970).
Assuming that pixel values in satellite images are geostatistical data
generated from an intrinsically stationary process (i.e., a spatial
random process satisfying two conditions: 1) a constant mean and
2) the variance of the differences at any two locations only depends
on the displacement between the two locations), ordinary kriging
uses the target SLC-off image itself to predict its un-scanned pixels
and co-kriging adds the secondary image into prediction (Pringle
et al., 2009; Zhang et al., 2007). Case studies demonstrated that the
geostatistical approaches improved the accuracy of filled results to
some extent compared with the USGS's local linear histogram-
matching method (Pringle et al., 2009; Zhang et al., 2007). However,
there are still some visual striping patterns in the filled results caused
by smoothing effects. Specifically, linear features are affected serious-
ly, such as where roads are filled as other landscapes, and where
rivers are filled as land surface (Pringle et al., 2009; Zhang et al.,
Fig. 1. NIR-red–green composites of Landsat TM images for the simulation study: (a)
2007). In other words, these geostatistical methods cannot fill the
SLC-off images well at the pixel-level, which limits the quantitative
applications of these filled images. The reason for this weakness of
geostatistical methods may be that the intrinsic stationarity assump-
tion is not always valid especially for heterogeneous landscapes
(Pringle et al., 2009).

Considering that NSPI and geostatistical interpolation methods
have their respective merits, this study develops a new geostatistical
approach for filling gaps in SLC-off ETM+ images by integrating the
theory of geostatistics with the idea of the NSPI method. We refer to
this new approach as Geostatistical Neighborhood Similar Pixel
Interpolator (GNSPI). It is expected that GNSPI will interpolate the
gaps more accurately than other methods. The steps of GNSPI will
be described first and then a simulation study will be implemented
to evaluate the performance of GNSPI.

2. Methodology

2.1. Data for algorithm test

In order to compare the proposed GNSPI with the NSPI method,
this study used the same data set in the NSPI paper (Chen et al.,
2011). The 15 km×15 km (500×500 Landsat pixels) area is located
in eastern Maryland around 39.10°N and 76.14°W. Fig. 1(a) shows
the Landsat 5 TM image acquired on April 29, 2010, which was
further simulated as SLC-off image with un-scanned gaps
(Fig. 1(b)). These simulated gaps were generated using the gap
mask from an actual SLC-off ETM+ image so that they represent the
real situation in practice. The simulated gaps are composited by
250,000 un-scanned pixels. This simulated SLC-off image (Fig. 1(b))
is used as the target SLC-off image, which will be filled using the
auxiliary images. To keep the consistency with NSPI, only the results
of green, red and near infrared (NIR) bands (bands 2, 3 and 4) were
reported to evaluate the performance of the proposed method.
Fig. 2 shows all the auxiliary images in this study, including Landsat
5 TM and Landsat 7 ETM+ images. TM auxiliary images are acquired
on February 8, 2010 (Fig. 2(a)), May 15, 2010 (Fig. 2(b)), and
September 4, 2010 (Fig. 2(c)), respectively. ETM+ auxiliary images
are acquired on March 20, 2010 (Fig. 2(d)), April 5, 2010 (Fig. 2(e)),
and June 8, 2010 (Fig. 2(f)), respectively. From Figs. 1 and 2, we can
see that it is a very heterogeneous area with relatively small patches.
TM image acquired on April 29, 2010; (b) simulated SLC-off image based on (a).



Fig. 2. The auxiliary images used in the case study: (a)–(c) TM images acquired on February 8, May 15 and September 4, 2010, respectively; (d)–(f) ETM+ images acquired on
March 20, April 5, and June 8, 2010, respectively.

Fig. 3. The flowchart of GNSPI using TM input images.
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In particular, the farm land in the area experiences rapid reflectance
changes. This area is an ideal region for testing the gap filling
algorithms, since most existing methods have some difficulties in
accurately filling gaps for areas with a heterogeneous landscape and
rapid changes (Maxwell, 2004; Maxwell et al., 2007; Pringle et al.,
2009; Roy et al., 2008; USGS, 2004; Zhang et al., 2007).

2.2. Algorithm development

Like NSPI, GNSPI also needs Landsat images acquired at other
dates as input images to fill the target SLC-off image (Chen et al.,
2011). The input images should have values at the corresponding
locations of gaps in the target image. Besides Landsat 5 TM images,
Landsat 7 SLC-off ETM+ images can also be used as input images
because the gaps are not completely overlapped among scenes
acquired on different dates. Landsat 5 TM images will be primarily
considered as input images if they are available. However, the Landsat
7 ETM+ images are also very important input data for GNSPI if
Landsat 5 ceases to function. Considering that there are some
differences for the implementation of GNSPI when using these two
types of input data, the steps of GNSPI using TM input images will
be introduced first and then the different steps for using ETM+
input images will be clarified.

2.2.1. Using TM images as input data
Fig. 3 shows the flowchart of GNSPI using TM images as input data.

The criterion of input image selection is that the image is the most
similar to the target image in seasonality, has smallest spectral
changes compared with the target image, and should be cloud-free.
Generally, the TM input image acquired closer in time to the target
image has a higher similarity to the target image. For the convenience
of this paper, the acquisition date of this input image is denoted as t1,
while the date of the target SLC-off image is denoted as t2. Here, the
TM image acquired on May 15 (Fig. 2(b)) is chosen as the input
image because it is temporally close to the target image acquired on
April 29 (Fig. 1(b)). The input image must be geometrically rectified
to match the target image. To eliminate the different illumination
conditions, both the target SLC-off image and input image are
calibrated to top-of-atmosphere reflectance with a range from 0 to
1. It is not necessary to do atmospheric correction and relative
radiometric normalization for these images because the effects of

image of Fig.�2
image of Fig.�3
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atmosphere on the images and the small difference of the spectral
properties between TM and ETM+ sensors (Teillet et al., 2001) will
be taken account into the GNSPI algorithm. However, it should be
noted that the difference in illumination conditions between images
may not be completely eliminated for mountainous areas even after
the radiometric calibration. In this case, the topographic correction
process (Riano et al., 2003) is recommended before implementing
gap filling.

As Fig. 3 shows, there are 6 main steps for the proposed GNSPI
method. These steps correspond to the strategy of kriging technique
in practice (Papritz & Stein, 1999). Specifically, the data need to be
detrended first using physical or empirical models (steps 1 and 2);
second, the semivariogram of the residuals from the detrending
model is estimated (step 3); third, the residual of the location without
observation is predicted using ordinary kriging (steps 4 and 5); last,
the final prediction of the location without observation is obtained
by adding back the trend (step 6). All steps of GNSPI will be discussed
in detail below.

2.2.1.1. Step 1: classifying the input image at t1. As in NSPI, it is reason-
able to assume that pixels with high spectral similarity should have
similar temporal changing pattern (Chen et al., 2011). In order to
model the temporal changing trend for each group of spectrally
similar pixels in the next step, the input image at t1 is classified
based on the spectral similarity of pixels. Considering that there
would be no significant land cover changes during the short time
interval between the input image and the target image, the classifica-
tion map of input image at t1 can also represent the situation at t2.
Here, to ensure the automation of GNSPI algorithm, we use an
unsupervised classifier, ISODATA, to classify the input image at t1.
ISODATA can automatically merge and split classes according to the
spectral similarity between pixels to get the optimal classification
results (Ball & Hall, 1965), and has been widely used for remotely
sensed image classification (Call et al., 2003; Tarabalka et al.,
2009). Fig. 4 shows the classification result of TM image of May
15, which includes 3 spectral classes. Based on visual interpretation,
the three spectral classes generally correspond to water, vegetation
and bare ground.

2.2.1.2. Step 2: modeling temporal relationship for each class. From t1 to
t2, the reflectance value would experience changes. These changes
Class 1 Class 2 Class 3

Fig. 4. Classification map of TM image acquired on May 15, 2010.
can be caused by different atmospheric situations and the intrinsic
difference of spectral properties between two sensors, but the most
significant changes would be caused by land surface dynamics, such
as the phenological changes of vegetation and variations in soil
moisture. It should be noted that different classes might have dif-
ferent temporal changing patterns. For example, the spectral charac-
teristics of vegetation change dramatically during the growing
season compared with that of bare ground. Therefore, the temporal
relationship between the input image at t1 and the target image at
t2 is modeled for each class, respectively by using the classification
map from the last step. This temporal relationship can be used to
detrend the target image at t2. A linear function is used to model
the temporal relationship for each class (Zhu et al., 2010):

R s; t2; bð Þ ¼ ak � R s; t1; bð Þ þ bk; if pixel s belongs to class k ð1Þ

where R(s, t1, b) and R(s, t2, b) are reflectance values of pixels at
location s in band b for images at t1 and t2, respectively; ak and bk
are coefficients of this linear model for class k. The coefficients can
be estimated by linearly regressing the reflectance values of all the
same-class pixels from the image at t1 and the image at t2, and the
locations of these pixels should be outside the gaps of the target
image. The regressed parameters for the temporal relationship of
each band and each class is listed in Table 1. It is clear that different
classes have different temporal relationships, indicating the necessity
to model the temporal relationship for each class rather than for the
whole image.

Then, the temporal relationship for each class is applied to predict
the reflectance values of all the pixels in the target SLC-off image,
including the pixels outside or inside the gaps:

R̂ s; t2; bð Þ ¼ âk � R s; t1; bð Þ þ b̂k; if pixel s belongs to class k ð2Þ

where âk and b̂k are coefficients estimated by linear regression,
R̂ s; t2; bð Þ is the prediction of reflectance for pixel s at t2. For the
pixel s outside the gaps, we can calculate its prediction residual,
ε(s, b), because it has observed values at t2:

ε s; bð Þ ¼ R s; t2; bð Þ−R̂ s; t2; bð Þ; if pixel s is outside the gaps: ð3Þ

2.2.1.3. Step 3: modeling semivariogram for each class. After the
residuals of all pixels outside the gaps are calculated by Eq. (3), we
can get a residual image as shown in Fig. 5. From Fig. 5, it is clear
that the residual is spatially continuous, especially for the pixels of
the same class. It is assumed that the residual of each class is an
intrinsically stationary spatial process, i.e., the differences of residuals
between two same-class pixels separated by a given distance have a
constant mean and a constant variance. Then a semivariogram can
be used to model the spatial dependence of residuals for each class
(Matheron, 1971). For each class, 1000 pixels outside the gaps in
the residual image are randomly selected as samples for estimating
the experimental semivariogram. Here, the lag distance is limited
from 0 to 40 pixels, because the pixels finally used to predict the
un-scanned pixel are located within this distance. For each spatial
Table 1
The regressed parameters for the temporal relationship of each band and each class⁎.

Band Class 1 Class 2 Class 3

a b a b a b

Green 0.3185 0.0389 0.4486 0.0457 0.6679 0.0161
Red 0.3256 0.0289 0.5077 0.0369 0.7758 0.0040
NIR 0.8419 −0.0145 0.5497 0.0835 0.8866 −0.0130

⁎ P-values for all the regression model are less than 0.0001.



Fig. 5. The residuals of prediction from the temporal relationship for NIR band.
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lag h, i.e., the separation distance between two locations, the experi-
mental semivariogram γ(h) can be calculated as:

γ hð Þ ¼ 1
2N hð Þ

XN hð Þ

i¼1

ε si; bð Þ−ε si þ h; bð Þ½ �2; ð4Þ

where N(h) is the number of pairs of samples apart with each other at
the distance h. Fig. 6 plots the experimental semivariograms versus
spatial lags of green band for class 1. It shows a gradually increasing
trend, indicating that residuals of pixels spatially close together are
more alike than those farther apart, and the semivariograms would
be more stable when the lags reach a certain distance.

In order to use the characteristics of spatial dependence in geosta-
tistical techniques, the experimental semivariograms need to be
fitted by a mathematical model, subject to the constraint of positive
definiteness. An exponential model is frequently used to fit the exper-
imental semivariograms (Goovaerts, 1997). The parametric function
of exponential model is:

γ hð Þ ¼ aþ σ2−a
� �

1−e−3h=r
� �

; for h > 0
0; for h ¼ 0

;

(
ð5Þ

where a, σ2, and r are parameters which represent nugget effect, sill,
and range, respectively. These parameters can be estimated through
Fig. 6. The experimental semivariogram and the fitted model for green band of class 1.
fitting the experimental semivariograms by a nonlinear weighted
least squares method (Cressie, 1985). For the example shown in
Fig. 6, the parameters a, σ2, and r of the fitted model are 1.84×10-6,
1.55×10-5, and 19.51, respectively. The fitted curve is very close to
the experimental semivariograms, indicating the effectiveness of the
parametric model and fitting method. Table 2 summarizes the
parameters of the fitted semivariograms for each band and each
class. It shows that the residuals of different classes have different
spatial dependence characteristics, so it is reasonable and necessary
to model the semivariograms for each class, respectively.
2.2.1.4. Step 4: selection of sample pixels. As in NSPI, GNSPI assumes
that spatially adjacent pixels with high spectral similarity (referred
to as similar pixels) have similar temporal changing patterns.
Eq. (1) describes the temporal change for each class in the whole
scene. However, the temporal change has some spatial variability
even for pixels from the same class. For example, farm land planted
with the same crop would show some different spectral changes
due to different fertilizing and irrigating strategies at different
locations. Therefore, when the global relationship Eq. (1) is used to
predict the reflectance value at t2, it will cause some local errors,
which is calculated by Eq. (3). Based on the assumption that
neighboring-similar pixels have similar temporal changing patterns,
the residuals of these similar pixels should also show the similarity.
For an un-scanned pixel (target pixel), its trend can be first estimated
by the global temporal relationship in Eq. (1), but the residual of this
prediction is unknown. In contrast, the similar pixels of this target
pixel outside the gaps have residual values. Accordingly, it is
reasonable to use the residuals of these similar pixels to predict the
residual of the un-scanned target pixel. Therefore, selecting sample
pixels for prediction is a key point in this approach.

Fig. 7 shows the schematic diagram for selecting sample pixels.
The selection process can be implemented using a TM time-series.
The number of images included in this time-series depends on the
data availability. The strategy for selecting these images is that
they are temporally separated in one year so that they can capture
the temporal changing characteristics as much as possible. We
recommend one image per season if it is possible to compose this
time-series, which could accurately identify pixels with the same
temporally changing pattern. This time-series includes the input
image at t1. Except the input image at t1, all other auxiliary images
in this time-series are only used to select sample pixels and are not
involved in predicting the value of the target pixel. If there are no
other available cloud-free images except the input image, the
selection process of sample pixels can be implemented only using
the input image at t1. In this study, the time-series includes 3 TM
images acquired on February 8, 2010, May 15, 2010, and September
4, 2010 (Fig. 2(a)–(c)).

For convenience, an example by using time-series of two images is
used to explain the selecting procedure. These two images are
ordered as the 1st image and the 2nd image based on their temporal
closeness to the target SLC-off image. These two images include the
Table 2
The parameters of the fitted semivariogram models for each band and each class.

Band Sill Nugget Range

Class 1 Green 1.55×10−5 1.84×10−6 19.51
Red 3.13×10−5 0 52.76
NIR 9.94×10−5 5.06×10−5 14.16

Class 2 Green 1.39×10−4 4.44×10−5 31.70
Red 4.07×10−4 8.90×10−5 37.49
NIR 7.12×10−4 7.94×10−5 24.25

Class 3 Green 3.00×10−5 1.51×10−5 17.42
Red 7.33×10−5 0 43.28
NIR 7.09×10−4 2.70×10−4 17.83

image of Fig.�6


a) Same-class pixels b) Similar pixels of the 1st image c) Similar pixels of the 2nd image 

d) Intersection of similar pixels e) Selected sample pixels 

Target pixel 

Gap in the target image 

Same-class pixel 
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Selected sample pixel 

Fig. 7. Schematic diagram of the selection of sample pixels when using TM images.
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one selected as t1 input image which has been classified in step 1.
First, from the classification map (Fig. 4), all the pixels in a
moving window with the same class as the central target un-
scanned pixel are selected (the light gray pixels in Fig. 7(a)).
Second, because the same-class pixels would also show some
locally varying characteristics, it is necessary to refine the same-
class pixels to ensure that the selected pixels are more similar to
the target pixel. From the 1st image, similar pixels are selected
from the same-class pixels according to spectral similarity. The
spectral similarity is defined as root mean square difference
(RMSD) between each same-class pixel si and the target un-
scanned pixel st (Chen et al., 2011):

RMSDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
b¼1

R si;1st; bð Þ−R st ;1st; bð Þð Þ2

n

vuuut
ð6Þ

where n is the number of bands. A large RMSD represents a large
spectral difference. Then, a threshold approach is used to identify
similar pixels (Chen et al., 2011). If RMSD of the si same-class
pixel satisfies Eq. (7), it will be selected as a similar pixel:

RMSDi≤
Xn
b¼1

σ b;1stð Þ � 2=m

" #
=n ð7Þ

where σ(b,1st) is the standard deviation of the 1st image for band
b, and m is the number of classes in the classification map (Fig. 4).
The similar pixels selected from the 1st image are shown in
Fig. 7(b). Using the same procedure, similar pixels of the 2nd image
are also selected as shown in Fig. 7(c). It is possible that the locations
of similar pixels selected from the two images might be different be-
cause the spectral similarity between pixels would change over time
due to the difference of temporal changing patterns. For example, a
pixel of vegetation before green-upwould show similar spectral charac-
teristics as a pixel of bare ground butwill be very different from the bare
ground after it turns to green. If more images are included in the
time-series, similar pixels will be selected from these images, re-
spectively using the same approach above. Third, the intersection
of the similar pixels from each image is selected (Fig. 7(d)), be-
cause the intersection from different dates can provide a more ac-
curate selection of pixels with the same temporal changing
pattern as the target pixel. Fourth, there may be a large number
of pixels located in the intersection, but a large number of sample
pixels used to predict the target pixel will decrease the computing
efficiency. Therefore, we only select M sample pixels from the
intersection for prediction. Considering that spatially closer pixels
may be more similar than spatially distant ones (Zhu et al., 2010;
Chen et al., 2011), M pixels outside the gaps of target SLC-off
image, which are spatially closest to the target pixel, are selected
from the intersection area as shown in Fig. 7(e). This study sets M
as 20, which is recommended by NSPI (Chen et al., 2011) and by
geostatistical interpolation (Webster & Oliver, 2001). If the pixels
in the intersection were fewer than the sample size M, all the pixels
in the intersection will be used as sample pixels, regardless of the
total number of pixels in the intersection. The size of the moving
window depends on the homogeneity of the image. If the area is
homogeneous, it is easy to select enough sample pixels within a
smaller moving window. Otherwise, a larger moving window is
needed. In our case study, the size of the moving window is set
as 25×25 pixels, by which 99% of un-scanned pixels can have
enough sample pixels for prediction.

2.2.1.5. Step 5: predict the residual of the target pixel by ordinary kriging.
As explained above, the residual of the prediction by the temporal
relationship (Eq. 2) is unknown for the un-scanned target pixel,
while the sample pixels have known residual values. In addition, the
residuals show spatial dependence (Fig. 5). Therefore, it is reasonable
to use these sample pixels to predict the residual of the target pixel
by the geostatistical method. Under the assumption of intrinsic
stationarity for the residual image, ordinary kriging predictor is
used to estimate the residual value of the target pixel. The prediction

image of Fig.�7
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of the target pixel ε⁎(st, b) by ordinary kriging is a weighted average
of the residual values of M sample pixels:

ε� st ; bð Þ ¼
XM
i¼1

wiε si; bð Þ; ð8Þ

where wi is the ordinary kriging weight of the ith sample pixel. The
weights are determined based on the locations of sample pixels
using the theoretical semivariogram obtained from step 3 and two
statistical optimality criteria: unbiasedness and minimum mean-
squared prediction error. For unbiasedness, the kriging weights are
forced to sum to 1. For the second criterion, the Lagrange multiplier
method is used to solve this constrained optimization problem to
get the weights. In matrix notation, weights can be calculated as:

w ¼ C−1c; ð9Þ

where,

wT ¼ w1; ⋯;wM ; v½ �;

C ¼
C s1; s1ð Þ ⋯ C s1; sMð Þ 1

⋮ ⋯ ⋮ ⋮
C sM ; s1ð Þ ⋱ C sM ; sMð Þ 1

1 ⋯ 1 0

2
664

3
775;

cT ¼ C s1; stð Þ; ⋯;C sM; stð Þ;1½ �;

where, v is the Lagrange multiplier, and C(si, sj) represents the
covariance between the pixel at location si and the pixel at location
sj. The covariance can be computed based on the fitted exponential
semivariogram model:

C si; sj
� �

¼ σ2−γ si−sj
��� ���� �

; ð10Þ

where | si−sj | is the spatial distance between the pixel at location si
and the pixel at location sj. After the weights are calculated, the
residual of the target pixel can be predicted by Eq. (8), and the
variance of the ordinary kriging prediction is:

σok
2 st ; bð Þ ¼ σ2−cTC−1c: ð11Þ

2.2.1.6. Step 6: calculate the final prediction and uncertainty. The
temporal trend of the target pixel R̂ st ; t2; bð Þ can be predicted by
Eq. (2) using the observation at t1. The reflectance value of the target
pixel R⁎(st, t2, b) can be finally predicted by adding the residual from
ordinary kringing estimator to the temporal trend:

R� st ; t2; bð Þ ¼ R̂ st ; t2; bð Þ þ ε� st ; bð Þ: ð12Þ

From the variance of ordinary kriging, the half-interval of 95%
confidence for the final prediction is:

I st ; bð Þ ¼ 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σok

2 st ; bð Þ
q

: ð13Þ
The ith input
ETM+ image

Fill gap-pixel
according to the

method using TM
images   

Multiple ETM+ images SLC-off image at t2

Fill all the 
gap pixels?

No i+1

Fig. 8. The flowchart of GNSPI using ETM+ input images.
The relative half-interval is used to represent the uncertainty of
the final prediction:

U st ; bð Þ ¼ 100% � I st ; bð Þ=R� st ; t2; bð Þ: ð14Þ

2.2.2. Using ETM+ images as input data
Fig. 8 shows the flowchart of GNSPI when ETM+ images are used

as input data. GNSPI requires that the pixel at the location of the un-
scanned target pixel has a value in the input image. Fortunately, the
gaps in the ETM+ images do not overlap completely among scenes.
Therefore, it is possible to use multiple ETM+ images to fill the
gaps by GNSPI. First, we need to select multiple ETM+ images
which cover the same area of the target image. The number of input
images depends on the degree of gap overlap. In this study, three
ETM+ images acquired on March 20, 2010 (Fig. 2(d)), April 5, 2010
(Fig. 2(e)), and June 8, 2010 (Fig. 2(f)) are used as input data for
filling gaps of the simulated SLC-off image (Fig. 1(b)). Second, all
the input ETM+ images are sorted by acquisition date. From these
ETM+ images, the ETM+ image temporally closest to the target
image will be preferentially used as input data (Chen et al., 2011).
Third, if the un-scanned pixels in the target image are scanned in
the first ETM+ input image, they will be first filled according to the
method described in Section 2.2.1. Then, the second temporally
closest ETM+ image will be used to fill the rest of the un-scanned
pixels until all the un-scanned pixels are filled. The only different
step of using ETM+ as input images is the selection of sample pixels.

Since the input ETM+ images also have gaps, to guarantee that
enough sample pixels outside the gaps can be selected, the size of
moving window is enlarged to 31×31 pixels in our case study.
Fig. 9 shows the process of selecting sample pixels when using
ETM+ images as input data. Here, we also use a time-series com-
posed of two ETM+ images as an example to explain the selection
process. First, the images are ordered by the temporal closeness to
the target image. The temporally closest image will be selected as
the input image at t1, which will be classified to get the classification
map. From this map, the pixels outside the gaps with the same class
as the target pixel are selected (Fig. 9(a)). Second, similar pixels in
the 1st and 2nd images are selected by the threshold method (Chen
et al., 2011) (Fig. 9(b) and (c)). Third, the intersection of similar
pixels selected from different images is identified. It should be
noted that both images in the time-series have gaps and the gaps
are partly overlapped. If we only select the intersection of similar
pixels outside the gaps in each image, the number of pixels in the
intersection would be very limited. Therefore, a specific approach is
applied to find out this intersection area: besides the similar pixels
simultaneously selected from all the images, the similar pixel selected
from the 1st image, which is located within gaps of the 2nd image, is
also kept in the intersection because we cannot determine whether it
is or not a similar pixel in the 2nd image. Last, M spatially closest
similar pixels are selected as final sample pixels for predicting the
value of the target pixel (Fig. 9(e)).

3. Testing experiment

3.1. Comparison of prediction accuracy

The simulated SLC-off image (Fig. 1(b)) was used to test the
proposed GNSPI method. The images in Fig. 2 were used as auxiliary
images to fill the simulated gaps. The actual image of the simulated
SLC-off image (Fig. 1(a)) can help us to assess the prediction accuracy
quantitatively.

For the case of using TM images as input images, the one tempo-
rally closest to the simulated SLC-off image, i.e., the image acquired
on May 15 (Fig. 2(b)), will be selected as an input image at t1.
However, considering the difficulty of collecting temporally close
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Fig. 9. Schematic diagram of the selection of sample pixels when using ETM+ input images.
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images in frequently cloudy regions (Ju & Roy, 2008), it is necessary
to investigate the performance of GNSPI when using a temporally
further input image. Therefore, the TM image acquired on February
8 (Fig. 2(a)), which has significant spectral changes with the target
SLC-off image, was also selected as an input image for filling gaps in
the simulated SLC-off image. Accordingly, we can obtain two filled
images using Fig. 2(a) and (b) as input images, respectively.

For the case of using ETM+ images as input images, three ETM+
images in Fig. 2 were used to fill the gaps in the simulated SLC-off
image. Considering the degree of gap overlap, these three ETM+
images were enough for filling all the un-scanned pixels in the
simulated SLC-off image.

To better evaluate the strength and limitations of GNSPI, we
compared GNSPI with other two methods: NSPI developed by Chen
et al. (2011) and previous geostatistical methods developed by
Zhang et al. (2007). For NSPI, input images are also needed, and either
TM or ETM+ images can be used as input images. Therefore, NSPI
used the same input images as GNSPI to fill the simulated SLC-off
image and got three filled results: two by using temporally closer
and further TM input images, respectively and one by using multiple
ETM+ input images. For previous geostatistical methods, ordinary
kriging technique does not need any other input images to fill the
data gaps while co-kriging technique incorporates the secondary
image to fill the data gaps (Zhang, et al., 2007). However, ordinary
kriging technique was shown to be comparable with co-kriging
(Zhang et al., 2007). Therefore, we only selected ordinary kriging
technique as previous geostatistical methods for comparison,
which is referred to as PGM in the following. PGM does not require
other input images, so only one filled result by PGM for the
simulated SLC-off image can be obtained. In addition, as NSPI has
been demonstrated to have better performance than some of the
existing methods (Chen et al., 2011), such as USGS's local linear
histogram matching method, we did not include these existing
methods for comparison.

The accuracy of the above filled results will be quantitatively
assessed by comparing themwith the actual image. Root mean square
error (RMSE) is a commonly used index for evaluating the accuracy
(Chen et al., 2011), which can be calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

R� si; t2; bð Þ−R0 si; t2; bð Þ½ �2

N

vuuut
; ð15Þ

where N is the total number of un-scanned pixels, R⁎(si, t2, b) and
R0(si, t2, b) are predicted and actual values of the ith un-scanned
pixel, respectively. A smaller RMSE indicates amore accurate prediction.

3.2. Comparison of filled image for classification

The filled SLC-off image will be used for various applications. Land
cover classification is one important application of Landsat images
(Fuller et al., 1994). To investigate the effectiveness of filled Landsat
SLC-off images in the application community, all the filled images in
this study were classified to get the land cover maps, and then
these land cover maps were compared with the one generated from
the actual image. In detail, we use a supervised classifier, Support
Vector Machines (SVM), to classify these filled images and the actual
image, because SVM has been widely used for remotely sensed image
classification and found to be competitive with the other best
classifiers (Huang et al., 2002). Training samples for each land cover
type were selected from the actual image by visual interpretation.
There are four land cover classes, i.e. water, natural vegetation,
crops and bare ground, and the size of training samples for each
class is 634, 775, 765, and 601 pixels, respectively. Then, all the
images were classified by SVM method using the same set of training
samples, which can eliminate the effects of different training samples
on the final classification result.

The errormatrixmethodwas applied to quantitatively assess the ac-
curacy of classification (Congalton, 1991). Because we focus on the
classification of gap filling result, only the pixels within the gaps were
taken into account for building the errormatrix. The classification result
from the actual image was treated as reference data. We admit that
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classification of the actual image is not exactly the ground truth, but it
can be used to evaluate whether the filled images can get similar classi-
fication results as the actual image when they use the same classifier
and the same training samples, which can explain the effectiveness of
these filled images in the classification application. Two commonly
used statistical indices, overall accuracy (oa) and kappa coefficient
(kappa) calculated from the error matrix (Congalton, 1991), were
reported to evaluate the classification accuracy. oa is one of the most
popular indices used to assess the classification accuracy. It is computed
by summing the correct proportions in the error matrix. kappa is anoth-
er popular index calculated as the proportion of agreement between
ba) Actual image

dc) NSPI-TM1

e) NSPI-TM2 f

g) NSPI-ETM+ h

Fig. 10. Results of gap-fill for the simulated SLC-off image. (a) the actual image; (b) the fi

February 8, TM image of May 15 and ETM+ images as input images, respectively; (d), (f)
May 15 and ETM+ images as input images, respectively; the smaller images on the right s
classification result and reference data after chance agreement is re-
moved (Congalton, 1991). Higher values of oa and kappa indicate better
classification results.

4. Results

4.1. Filled results of the simulated SLC-off image

Fig. 10 shows all the filled results of the simulated SLC-off image
by different methods and different input images. For simplification,
the result filled by NSPI using the input TM image of February 8 is
) PGM

) GNSPI-TM1

) GNSPI-TM2 

) GNSPI-ETM+ 

lled image by PGM; (c), (e) and (g) are the filled images by NSPI using TM image of
and (h) are the filled images by GNSPI using TM image of February 8, TM image of

ide of each filled image are the zoomed-in regions marked by a black square.



Table 3
RMSE of gap-filling results.

Band PGM NSPI-
TM1

GNSPI-
TM1

NSPI-
TM2

GNSPI-
TM2

NSPI-
ETM+

GNSPI-
ETM+

Green 0.0151 0.0121 0.0072 0.0063 0.0057 0.0071 0.0064
Red 0.0244 0.0173 0.0108 0.0095 0.0086 0.0113 0.0102
NIR 0.0550 0.0398 0.0256 0.0209 0.0190 0.0235 0.0224
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referred to as NSPI-TM1, while the result using the TM input image of
May 15 is referred to as NSPI-TM2 and the result using ETM+ is NSPI-
ETM+. Correspondingly, the result filled by GNSPI using the TM
image of February 8 as input image is referred to as GNSPI-TM1,
while the result using the TM image on May 15 as input image is
referred to as GNSPI-TM2 and the result using ETM+ is GNSPI-ETM+.
By visual comparison of all filled images shown in Fig. 10, it is clear
that the image filled by the previous geostatistical method (PGM)
shows the most obvious striping effects, indicating that there are large
prediction errors by PGM. For the comparison between NSPI and
GNSPI, the images filled by both methods are generally visually close
to the actual image. However, from the zoomed area of these filled im-
ages, we can see that GNSPI fills the gaps more accurately than NSPI
when bothmethods use a temporally further TM input image. To better
assess the similarity between the filled results and the actual image,
Fig. 11 shows the scatter plots of all the filled results and the actual
image for NIR band. From Fig. 11, we can see that data points of all re-
sults are almost equally distributed at the two sides of 1:1 line, indicat-
ing small biases of all results. However, the data points in the scatter
plot of the NSPI and GNSPI predictions fall closer to the 1:1 line than
the PGM prediction. The R2 value of the PGM prediction is 0.7100,
which is the lowest one among all the filled results. For comparison be-
tween NSPI and GNSPI, their scatter plots and R2 values are very close
except when using a temporally further TM image as the input image.
We can see that when using TM image of February 8 as input image,
GNSPI can get a higher R2 value 0.9368 than NSPI's 0.8481, indicating
that the image filled by GNSPI is closer to the actual image than NSPI.

Table 3 reports the RMSE values for all the gap-filling results.
Generally, the accuracy of the PGM prediction is the lowest, because
the RMSE values of all the three bands are the highest compared
with NSPI and GNSPI. For both NSPI and GNSPI, the results filled by
temporally closer input images can get higher accuracy. By using
the same input image, GNSPI can get smaller RMSE values than
NSPI, especially when using a temporally further input TM image.
From Table 3, we can see that GNSPI can reduce the RMSE value of
NSPI from 0.0121 to 0.0072 for green band, from 0.0173 to 0.0108
for red band, and from 0.0398 to 0.0256 for NIR band when both
Fig. 11. Scatter plots of the actual and the predicted values of all un-scanned pixels
methods use TM image of February 8 as input data. The relative
reduction of RMSE value is more than 35% for each band, indicating
that GNSPI can greatly improve the accuracy of gap filling when a
temporally distant input image is used.

As mentioned in the Methodology section, GNSPI can also provide
the uncertainty of the prediction by Eq. (13). Table 4 shows the mean
uncertainty of each filled results by PGM and GNSPI. Comparing the
mean uncertainty of PGM and GNSPI, we can see that GNSPI can
greatly reduce the prediction uncertainty. In addition, it is apparent
that the uncertainty of prediction by temporally further input images
would be larger than that by temporally closer input images.
Therefore, using the temporally closer TM images for filling the gaps
can reduce the prediction uncertainty. Although the multiple ETM+
input images are also temporally close to the target image, the
uncertainty of GNSPI-ETM+ is larger than that of GNSPI-TM2. The
reason is likely that the sample pixels selected from ETM+ input
image are generally spatially farther from the target pixel than the
similar pixels selected from the TM input image.

4.2. Classification of filled results

Table 5 shows the accuracy assessment of the classifications of all
filled images using the classification of the actual image as reference
data. Higher values of oa and kappa indicate a stronger agreement
between the classifications of the filled image and the actual image.
Classification of PGM result has the lowest values of oa and kappa. The
oa value of PGM is only 0.6572, which means that more than 34%
of pixels are classified as different land cover types from the actual
for NIR band. Panels (a)–(g) are the scatter plots of Fig. 10(b)–(h), respectively.



Table 4
The mean uncertainty (%) of filled results by PGM and GNSPI.

Band PGM GNSPI-TM1 GNSPI-TM2 GNSPI-ETM+

Green 34.25 15.81 11.30 13.54
Red 61.36 28.74 15.78 28.92
NIR 78.63 29.52 21.13 19.10
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image. Therefore, at least in this case study, the filled image by PGM
is not good enough for the application of land cover mapping. Gen-
erally, classifications of images filled by NSPI and GNSPI have similar
accuracy except when using temporally further input images. When
using closer input images, both the classification of images filled by
NSPI and GNSPI can get an oa value around 0.9, which would be
good enough for the applications in practice. However, when using
temporally further input images, the accuracies of the classification
of the images filled by NSPI and GNSPI are both lower than those
using a temporally closer input image. However, the reduction of ac-
curacy for GNSPI is smaller than NSPI, indicating that GNSPI is more ro-
bust than NSPI in producing a filled image. Therefore, GNSPI would
satisfy further applications like land cover mapping even using tempo-
rally distant input images.

5. Discussion and conclusions

Landsat 7 ETM+ images have been widely used in studies at
regional and global scales, but the SLC failure greatly reduces their
utility. In addition, the failure is permanent after subsequent efforts
to recover the SLC were not successful, so the necessary and feasible
way to address this problem is to fill the gaps in the SLC-off images.
Although there are many methods proposed to fill the gaps, the
quality of the filled images in heterogeneous regions is still not
satisfactory for further applications, with the exception of images
filled using the recently developed NSPI method. However, NSPI
predicts the value of un-scanned pixels empirically and cannot
provide prediction uncertainty. This paper proposed a new method,
GNSPI, to fill the gaps in SLC-off images, which is based on the
geostatistical theory and NSPI. Through the simulation study, GNSPI
was competitive compared with the previous geostatistical methods
and NSPI. For the purpose of simplicity and consistency with NSPI,
only results of bands 2, 3, and 4 were reported, but the other bands
show similar results as these three bands in our simulation study.
GNSPI can largely improve the accuracy of gap filling compared
with the previous geostatistical method. Although GNSPI is only
slightly better than NSPI when using temporally closer input images,
GNSPI greatly reduces RMSE values of filled results compared with
NSPI when using temporally further input images. The robustness of
GNSPI when using temporally further input images is very important
because it is difficult to acquire a temporally closer input image in
cloudy regions (Ju & Roy, 2008). However, in some frequently cloudy
regions, it is also difficult to acquire cloud-free input images even
though they are temporally distant from the target image. For this
case, clouds in the input image should be removed by cloud removal
methods (Melgani, 2006; Zhu et al., 2012) before it is used to fill gaps.

Compared with the previous geostatistical methods, GNSPI has two
major strengths. First, GNSPI makes better use of the temporal
information from the input image. The information of the input image
is used to predict the values of all pixels outside the gaps by using the
Table 5
Standard accuracy assessment of land cover classification from all filled results.

Index PGM NSPI-
TM1

GNSPI-
TM1

NSPI-
TM2

GNSPI-
TM2

NSPI-
ETM+

GNSPI-
ETM+

oa 0.6572 0.8248 0.8719 0.8936 0.9057 0.8811 0.8761
kappa 0.5302 0.7595 0.8235 0.8537 0.8703 0.8366 0.8300
temporal relationship of Eq. (1). It removes the temporal trend of the
target image and obtains the residual image. Ordinary kriging technique
requires the image to be an intrinsically stationary spatial process, that
is,with constantmean. The previous geostatisticalmethods apply anor-
dinary kriging technique directly on the original reflectance image
(Pringle et al., 2009; Zhang et al., 2007). However, for the original reflec-
tance image, the intrinsic stationarity assumption is more difficult to
satisfy because it is very common that some very low reflectance ob-
jects like water and also very bright objects like bare ground coexist in
the same image. On the contrary, for the residual image after removing
the temporal trend, it better satisfies the assumption of an intrinsically
stationary spatial process, so it is more reasonable to apply ordinary
kriging on the residual image than the original reflectance image. In
addition, GNSPI emphasizes the temporal information of the pixel in
the input image at the same location of the gap pixel, which can help
to keep the spatial details of the filled image. The previous geostatistical
methods can also apply co-kriging technique to use the information of
the secondary image. However, the previous geostatistical methods
select samples from the secondary image for the predicting process
rather than emphasizing the sample at the same location of the un-
scanned pixel. This may be the reason why there is no significant
difference between filled results of ordinary kriging and co-kriging
(Zhang et al., 2007). Second, GNSPI considers the difference between
different classes. GNSPI models the spatial dependence for each class
rather than for the whole image, which can better satisfy the intrinsic
stationarity assumption. Pringle et al. (2009) admitted that it is not
plausible to assume that the whole image satisfies the intrinsic
stationarity assumption. In addition, GNSPI uses the sample pixels,
which have high spectral similarity with the target pixel, to predict
the value of the target pixel. Conversely, the previous geostatistical
methods selected the spatially closest samples rather than the
samples with the highest spectral similarity, which would cause the
striping effects on the filled image. For instance, a target pixel in a nar-
row river uses its surrounding pixels from bare ground as samples,
which will cause large prediction errors. In all, through better use of
temporal information and consideration of the difference between
classes, GNSPI can significantly improve the accuracy of gap filling
compared with the previous geostatistical methods.

Compared with NSPI, GNSPI has three main advantages. First, while
both GNSPI and NSPI use weighted average interpolator to predict the
un-scanned pixel, the weights are generated in different ways. Weights
in GNSPI are calculated from geostatistical theory and depend on the
spatial dependence of the image.Weights in NSPI are empirically deter-
mined and do not depend on the image itself. Therefore, GNSPI should
be more robust in various landscapes than NSPI. Second, GNSPI selects
better sample pixels in the neighborhood of un-scanned target pixel
than NSPI. GNSPI uses a time-series as the auxiliary data to refine the
similar pixels, and selects sample pixels with more similar spectral
characteristics and more similar temporal change pattern to the target
pixel. NSPI just uses the input image itself to select samples. In the
case of long temporal intervals between the input and target images,
the similar pixels selected by NSPI would be incorrect. Considering
that the probability of acquiring one cloud-free observation of a Landsat
pixel per season inmost regions is high (Ju & Roy, 2008), it is reasonable
and feasible to get help from these cloud-free observations to refine the
similar pixels. Last but not least, GNSPI applies a geostatistical approach
which can provide the uncertainty of prediction, while NSPI is still a
type of deterministic approach which cannot produce statistical uncer-
tainty for each prediction (Chen et al., 2011). The prediction uncertainty
is important and helpful for further applications of the filled images. It
can help users to estimate the potential errors of using filled images
as input data sources in their studies. Although the improvement of
GNSPI from NSPI is not that significant compared with the improve-
ment of GNSPI from previous geostatistical methods, it has a number
of strengths and provides a new perspective to address the SLC-off
problem.
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It should be noted that GNSPI has some predetermined parame-
ters. Basically, the sample size and the number of classes are two
parameters that are most sensitive in GNSPI. Therefore, we mainly
investigated the effects of sample size and the number of classes.
For sample size M, we tested GNSPI by using different sample sizes.
The results showed that the accuracy of gap filling is increasingly
improved with sample size but it stabilizes when sample size is larger
than 20, which is consistent with the results in NSPI (Chen et al.,
2011). Considering that larger sample size will cost more computing
time, we also recommend 20 as the appropriate sample size for filling
gaps using GNSPI in practice. For the classification of input image, the
minimum and maximum numbers of classes need to be specified so
that ISODATA can automatically determine the optimal number of
classes by merging or splitting the classes. Obviously, the number of
land cover classes should not be too small or too large: a small num-
ber of classes cannot capture the difference in temporal relationships
for different land cover types; a large number of classes would make
the land cover map more fragmented, causing the sample pixels dis-
tant from the target pixel. Therefore, the sensitivity of GNSPI to the
number of classes was tested. The result showed that the accuracy
of filled images is comparable if they use the number of classes
close to the optimal one from ISODATA classifier, indicating the rela-
tive robustness of GNSPI to the number of classes.

One disadvantage of GNSPI is its relatively slow computing speed. In
the case study, GNSPI needed almost twice the time of NSPI to fill all the
un-scanned pixels. However, considering the advantages of GNSPI, i.e.,
the most accurate gap-filling algorithm and providing uncertainty
measures, the relatively slow computing speed is acceptable andworth-
while. Therewould be three options to improve the computing efficien-
cy. First, fewer sample pixels will reduce the computing time. However,
a small sample size will reduce the prediction accuracy. Zhang et al.
(2007) only used 8 pixels spatially nearest to the target pixel for predic-
tion,whichwas considered not enough byPringle et al. (2009).Webster
and Oliver (2001) recommend at least 20 samples for kriging interpola-
tion, which is followed in our case study. Therefore, it is necessary to
find a balance between prediction accuracy and computing time when
deciding an appropriate sample size. Second, a hybrid method is
worth considering in the future, which has been explored by Pringle
et al. (2009) and demonstrated to be a feasibleway to increase the com-
puting efficiency. This hybridmethod could combine GNSPI with sever-
al high-speed methods, and could automatically select one of these
methods according to the specific situations. For example, for homoge-
neous regions, the local linear histogram matching method (USGS,
2004) can be applied to predict the un-scanned pixels; NSPI can be
chosen if the input image is temporally close to the target image. Last,
the computing speed can be speeded up using high-performance com-
puters or parallel computing.
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