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Abstract 
 
The Aedes albopictus (Skuse) (Diptera Culicidae) control program currently applied in the Emilia-Romagna region (Northern It-
aly) is based on the use of ovitraps as a tool for mosquito population density estimation. During the favourable season 2008 (May-
October), 2,741 ovitraps were activated in the urban areas of 242 municipalities according to standard criteria and were checked 
weekly. The universal kriging interpolation was used to estimate the seasonal abundance of the species at unsampled locations, 
and spatial cluster analysis was used to identify particular areas that had statistically significant high or low mosquito density. The 
overall data pattern was highly clustered and autocorrelated, and the choropleth and LISA cluster maps showed high egg density 
in the North, North-East and in the South-West areas of the region. The cross-validation statistics and results showed that the pre-
dicted values were reasonable for map production. The characterization of large geographic areas with high or low abundance of 
Ae. albopictus may provide information both on the environmental variables that promote species dispersion, and on the epidemic 
diseases risk, essential to develop effective disease surveillance programs, particularly for Chikungunya and Dengue. 
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Introduction 
 
An outbreak caused by Chikungunya virus (CHIKV), 
never previously reported in Europe, occurred in 
Emilia-Romagna Region, Italy, in December 2007, with 
247 identified cases between July and September (An-
gelini et al., 2007). The CHIKV causes a nonfatal, self-
limiting disease characterized by abrupt onset of high 
fever, severe arthralgia, or arthritis, often associated 
with skin rash. 

Aedes albopictus (Skuse) (Diptera Culicidae) was in-
dicated as the primary vector of CHIKV in Italy 
(Bonilauri et al., 2008). The first detection of Ae. al-
bopictus in Emilia-Romagna Region dates back to 1994 
(Carrieri and Bellini, unpublished data). 

This species lay eggs in a variety of shaded artificial 
containers, particularly in the catch basins in urban ar-
eas; eggs hatch within one or two days after immersion, 
during the warm season. 

The development time to the adult state may take from 
6 to 10 days. Adults disperse at a maximum distance 
comprised in the range of 600-800 m (Honorio et al., 
2003; Liew and Curtis, 2004). 

Population density was measured in many mosquito 
control programs in several Italian cities by means of 
monitoring systems based on specific ovitraps (Bellini 
et al., 1996). 

Ovitraps are largely used worldwide to monitor con-
tainers breeding mosquito species (Thaggard and Eli-
ason, 1969) and their reliability in terms of quantitative 
estimation of the adult population density is controver-
sial and questioned by several authors (Hawley, 1988; 
Holck et al., 1988; Zhang and Lei, 2008). 

In the last years, the use of Geographic Information 
System (GIS) has given important practical contribu-
tions to the investigation on the spatial component of 
the epidemiology of infectious diseases (O’Dwyer and 
Burton, 1998), including vector-borne diseases such as 
malaria, trypanosomiasis, rickettsiasis, and a range of 
arboviral diseases (Liebhold et al., 1993; Kitron, 1998; 
Brooker et al., 2002). 

Moreover, the collection of georeferenced epidemiol-
ogical sensitive data can be useful also for cluster iden-
tification and geostatistical analyses. The investigation 
on possible disease and vector born-disease clustering is 
fundamental to epidemiology and medical entomology, 
with one of the aims being to determine whether the 
clustering is statistically significant and worthy of fur-
ther investigation, or whether it is likely to be a chance 
occurrence. Global and local indicators of spatial asso-
ciation like Moran’s I (Cliff and Hord, 1981) or Getis-
Ord Statisitics (Getis and Ord, 1992) are often used to 
measure the data clustering level. Geostatistical tech-
niques are used to produce prediction surfaces and also 
an error or uncertainty surfaces, giving an indication of 
how good the predictions are. 

Since 2006, the Emilia-Romagna Region Public 
Health Department has started a vector surveillance and 
risk assessment program that includes the implementa-
tion and management of a monitoring system based on 
georeferenced ovitraps and the development of a spe-
cific GIS. This study is part of a project that aims to de-
velop a large scale Ae. albopictus monitoring network, 
based on the mean egg density. This monitoring method 
can be achievable at low cost but need to be well-
designed in order to provide reliable information for the 
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estimate of the infestation level in the large urban areas 
(exceeding 600 hectares), where the health risk of mos-
quito vectored diseases is higher. 

We explored the spatial structure of Ae. albopictus us-
ing the data collected from the ovitrap network in the 
season 2008. The number and arrangement of the 
ovitraps had been defined on the base of the data of the 
2007 season by Carrieri et al. (unpublished data). Our 
specific aim was to detect significant clusters of abun-
dance and to depict, by means of geostatistical analysis, 
a continuous surface map of Ae. albopictus density in 
the study area. 

The definition of large continuous geographic areas 
with high or low abundance of Ae. albopictus may pro-
vide information on the environmental variables that 
promote species dispersion, useful to implement the dis-
ease risk surveillance programs to prevent CHIKV and 
Dengue epidemic. 

To achieve this aim, the mean egg density data col-
lected by ovitraps in the season 2007 were used to assess 
the mosquito population’s aggregation degree, through 
the application of the Taylor’s power law, and to define 
the minimum sample size to set-up a monitoring design 
for the year 2008 proficient to ensure a high degree of 
accuracy at the provincial and municipal scale. The reli-
ability of the method and its efficiency were assessed in 
the season 2008 measuring the relative variation. 
 
 
Materials and methods 
 
Study area 

The Emilia-Romagna Region is situated in the middle 
North of Italy, lying between 9°11' and 12°45'E longi-
tude and 43°44' to 44°59'N latitude. This region is 
bounded by the Apennine Mountains to the South and 
West, by the Adriatic Sea to the East, and by the Po 
River for most of the northern border (figure 1). Respec-
tively, 47% and 27% of the territory is represented by 
lowlands and hills, with a warm humid climate, charac-
terized by mean daily summer temperature of 24-30 °C 
(May-September) and a mean relative humidity of about 
60% (ARPA, 2008). 

The area has a mean annual rainfall of 600 mm, occur-
ring for 60% between April and October (ARPA, 2008). 
In 2008, the region included 341 municipalities for a 
total inhabited area of 22,122 km2. Seventy percent of 
the 4,275,843 (ISTAT, 2009) inhabitants live in the 
lowlands. 
 
Mosquito’s egg sampling 

The optimal number of ovitraps to be placed in an ur-
ban area varies as a function of the species density and 
dispersion; these parameters depend on weather trend, 
stage of colonization and other environmental condi-
tions (vegetation, breeding sites, etc.). At the initial step 
of colonization the density of the species is patchy and 
aggregated (low mosquito density and high data aggre-
gation) and more ovitraps are needed than in areas at a 
mature step of colonization (high mosquito density and 
more uniform spatial dispersion) in order to achieve the 
same reliability level. 

We calculated the minimum number of ovitraps 
needed according to the Taylor’s equation (Taylor, 
1961; Taylor, 1984; Kuno, 1991). This function has 
been largely used to quantify the aggregation degree and 
the statistically significant sample size in insects moni-
toring: 
(1)  S2 = a*mb 

b measures data aggregation (which is a constant of 
the species), and, when greater than 1, indicates a rela-
tionship between mean and variance, i.e. that data are 
aggregated; a is a constant depending on environmental 
conditions. Both are necessary to define the minimum 
sample unit through the following equation: 
(2)  N=[Zα/2/D]2*a*mb-2 

 
where Z is the Standard Normal Distribution Value for 

a given probability (Buntin, 1994); D is the precision 
level, and according to literature, D = 0.1 is considered 
a sufficient value (Southwood, 1978) while a D value 
between 0.2 and 0.3 is considered optimal for the bino-
mial sampling of Ae. aegypti (Mogi et al., 1990); m is 
the mean eggs density value. 

In our study, 242 municipalities participated to the 
monitoring network, and we referred to regional coordi-
nation of information on the environment (CORINE) 
Land Cover 2003 to individuate the classes (continuous 
urban fabric, discontinuous urban fabric, industrial or 
commercial units) which were considered as inhabited 
areas and covered a total area of 1,050 km2. Every in-
habited area was divided into a number of quadrants 
equal to the minimum number of ovitraps to be placed; 
2,741 ovitraps were positioned, and the distance be-
tween two ovitraps varied from 200 to 800 m, according 
to the number of quadrants per area. 

Ae. albopictus eggs were sampled weekly (from May 
to October). Each ovitrap was constituted by a black 
conic plastic cup (400 ml volume, upper diameter 8 cm, 
lower diameter 6 cm), filled up to 2/3 of its height with 
285 ml of de-chlorinated water (Celli et al., 1994). A 
masonite strip of 12.5 x 2.5 cm was used as egg deposi-
tion substrate. 
 
 

 
 

Figure 1. Emilia-Romagna Region map (Northern It-
aly). Abbreviations of nine provinces: PC = Piacenza, 
PR = Parma, RE = Reggio-Emilia, MO = Modena,  
BO = Bologna, FE = Ferrara, RA = Ravenna, FC = 
Forlì-Cesena, RN = Rimini. 
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The ovitraps were positioned at the beginning of the 
season by a staff of skilled technicians, according to pre-
cise instructions and rules to assure the maximum homo-
geneity of the microhabitat conditions (in a green, shaded 
and easily accessible area, laying on the ground, with a 
free space above of at least 1 meter) and were maintained 
unchanged until the end of the season. Ovitraps were geo-
referenced in the field by using Global Positioning Sys-
tem (GPS) equipped palmtops and entered into GIS with 
the proper address, in order to be easily found by the 
technicians. Every week the masonite strips were 
changed and sent to ARPA (Regional Agency for Envi-
ronmental Protection in Emilia-Romagna) for eggs count-
ing by stereomicroscope. All data were weekly published 
on a dedicated web site (www.zanzaratigreonline.it). 
 
Cluster analysis 

Monitoring data of each municipality were aggregated 
into eggs number/ovitrap/week calculating the mean of 
the 22 sampling weeks from May to October 2008. 

We evaluated whether these data were autocorrelated 
by calculating the Global Moran’s I index, while the sta-
tistically significant difference against the null hypothe-
sis (the absence of spatial autocorrelation) was tested 
using the permutation procedure (Anselin, 1996). 

In global spatial statistics, local and small areas of 
spatial heterogeneity are often masked by averaging the 
spatial pattern over the entire study area into a single 
value of spatial autocorrelation. In order to avoid this 
occurrence, Local Indicator of Spatial Association 
(LISA) (Anselin, 1995) was used as a spatial explora-
tory tool to detect localized spatial structure that could 
indicate a lack of stationarity (Fortin and Dale, 2005), 
i.e. to assess if municipalities formed statistically sig-
nificant high or low abundance clusters. 

GeoDa package (www.geoda.uiuc.edu) (Anselin, 2003; 
2005) was used for both the global and local autocorre-
lation analyses and ESRI ArcGIS for map drawing. 

Weight distance matrix, essential for the computation 
of spatial autocorrelation statistics, was based on queen 
contiguity and Euclidean distance. 
 
Geostatistical analysis 

Geostatistics assumes that at least some of the spatial 
variations of natural phenomena can be governed by 
random processes indicating that a certain degree of in-
terdependence is present between the values of a vari-
able at different geographic scales to which we refer to 
as spatial autocorrelation. 

Many methods are available in the geostatistical analy-
sis. The kriging interpolation method can accomplish two 
distinct tasks: quantifying the spatial structure of the data 
and producing a prediction. Quantifying the structure, 
known as variography, consists in a spatial dependence 
model fitted to the data (variogram). To predict an un-
known value for a specific location, the kriging interpola-
tion method uses the fitted model obtained from 
variography, the spatial data configuration and the values 
of the measured sample points around the prediction loca-
tion (Krishna Murthy and Abbaisah, 2007). 

According to Service (1993), the efficiency of the 
sampling design for each municipality was evaluated 

using relative variation (RV): 
(3)  RV = standard error/mean 

An RV of 0.3 has been considered the upper limit to 
define the sampling design as statistically adequate, ac-
cording to the RV calculated for Ae. aegypti binomial 
sampling by Mogi et al. (1990). 

For the geostatistical analysis, the centroid was calcu-
lated for each of the monitored polygons (that indenti-
fied the municipalities) with a mean RV < 0.3 calculated 
over the 22 weeks of sampling. 

Exploratory Spatial Data Analysis (ESDA) provided by 
ArcGIS Gesostatistical Analyst extension was used to 
identify the distribution of the data, the global trends, the 
global and local outliers and the spatial autocorrelation. 

Stationarity and independence of the data were verified 
by the Kolmogorov-Smirnov test (StatSoft, 2001; Statis-
tica 6). If the data were stationary, we analyzed them geo-
statistically. If data were not stationary, we proceeded to 
data transformation and data de-trending through a 
mathematical formula, and the non-random (determinis-
tic) component of a surface was removed from the data in 
order to obtain a normal distribution. 

The presence of spatial autocorrelation among cen-
troids data was performed calculating the Local 
Moran’s I index on five lag classes of 7.5 km each (one 
lag was intended as the half of the maximum distance 
between centroids, as they were not uniformly distrib-
uted). The maximum lag distance (37.5 km) measured 
less than one-half of the smallest dimensions of study 
area (i.e. the mean North-South dimension, measuring 
90 km). Logarithmic (y + 1) transformation of the data 
was used to homogenize variance. 

Correlograms were tested for spatial autocorrelation 
significance using Monte Carlo simulation and progres-
sive Bonferroni correction (Legendre and Legendre, 
1998) to adjust for repeated testing; the analysis was 
performed by ROOKASE Software (Sawada, 1999). 

The best experimental variogram model was identified 
fitting our data by using VARIOWIN (Pannatier, 1996) 
and the universal kriging interpolation was used to esti-
mate species abundance at unsampled locations 
throughout the study area, on the base of the mean egg 
density of each municipality. Local averaging of mean 
egg density data was based on a search radius of 30 km 
(maximum positive significant autocorrelation) in order 
to include a minimum of 20 data, being the nugget more 
than half of total sill height (Welhan, 2004). 

The universal kriging interpolation is an adaptation of 
the ordinary kriging method that accommodates trend or 
non-stationarity in the mean, for example when large 
variation in local means obtained from different geo-
graphic areas occur (Ryan et al., 2004). 

A leave-one-out cross validation method was used to de-
termine whether the universal kriging interpolation pro-
vided reliable estimates of mean egg density at unsampled 
locations. The criteria used for accurate prediction in the 
cross-validation were requested to be the followings: slope 
line near to 1, mean error close to zero, root mean square 
error average standard error as small as possible and stan-
dardized root mean square error close to 1. 

Analyses were conducted using ArcGIS Geostatistical 
Analyst (ESRI Geostatistical Analyst Tutorial). 
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Results 
 
Cluster analysis 

A total of 2,710,668 eggs were collected by the 2,741 
ovitraps over 22 weeks of sampling (from week 21 to 
42). The mean egg density calculated for each munici-
pality ranged from 0 to 159 eggs/ovitrap/week as re-
ported in choropleth map (figure 2). 

The cluster analysis was conducted on all the munici-
palities’ data sets (N = 242) and those municipalities 
with RV > 0.3 were evidenced by wired polygons in the 
maps (figures 3a and 3b). The overall data pattern was 
highly clustered and autocorrelated (Global Moran’s       
I = 0.25; p < 0.01). 

After the global autocorrelation study, using Univari-
ate LISA analysis by GeoDa package we obtained a 
cluster map (figure 3a) with the respective significance 
map (figure 3b). Municipalities areas that formed high 
density clusters were evidenced in red, while munici-
palities forming low density clusters were evidenced in 
blue. The choropleth and LISA cluster maps showed 
high egg density in the north, north-east and in the 
south-west areas of the region. In table 1, the number of 
municipalities forming high and low clusters, divided 
per province, is reported. 
 
Geostatistical analysis 

Those municipalities with RV > 0.3 were excluded 
from the geostatistical analysis because their patterns 
resulted not adequate to measure mosquito population 
and to produce a smoothed interpolation map. 

The analysis was conducted only on the municipali-
ties’ data sets which showed a sufficient degree of 
monitoring precision (RV < 0.3; N = 160). The nearest 
neighbour distance between centroids varied form 2,233 
to 14,803 m, with a mean of 6,272 m. 

Mean egg density frequencies and log transformation 
data resulted stationary (Kolmogorov-Smirnov Test:    
D = 0.10; p < 0.05). 

In table 2, we reported local Moran’s I analysis. Spa-
tial autocorrelation was greatest (0.42) at the lag           
0-7.5 km, medium at the second lag and low in the last 
three lags. The correlogram expressed a linear correla-
tion with significant high positive values at the short 
distances (0-7.5 km) and low positive ones at large dis-
tances (22.5-30.0 km) local autocorrelation was statisti-
cally significant (p < 0.05) for the first 4 lag distances. 

Trend analysis results were presented in three-
dimension perspective trend plots for the egg num-
ber/ovitrap/week calculated for the municipalities with 
RV < 0.3 (figure 4). 

The detrending of data was not applied due to the 
complexity of the polynomial approximating trend sur-
face, and because the polynomial trend surfaces acceler-
ated without limit to higher or lower values in areas 
where there were no control points, such as along the 
edges of the maps. 

Outliers and directional influence in the spatial data 
were also examined by using semivariogram cloud/surface 
in ArcGIS Geostatistical Analyst. No particular outliers 
and directional influence were found. 
 

 
 
Figure 2. Choropleth map of mean egg density (number 

eggs/ovitrap/week) calculated for 22 monitoring 
weeks. (Legend values are subdivided into quartiles; 
wired polygons represent municipalities with a sam-
pling design not statistically efficient to measure real 
population densities for RV > 0.3). 

 
 

 
 

 
 
Figure 3. Local Indicator Spatial Association (LISA): 

cluster (a) and significance (b) maps. (Wired polygons 
represent municipalities with a sampling design not 
statistically adequate to measure real population densi-
ties for RV > 0.3). 
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Then we performed variogram analysis by using 
VARIOWIN and the best model obtained from the data 
was the spherical model with 0.11 as nugget (the vari-
ance at zero distance), 60 km as range (beyond which 
the semivariance is constant), 0.09 as partial sill (the 
constant semivariance value beyond the range). Model 
parameters obtained from variogram analysis were used 
in ArcGIS Geostatistical Analyst for obtaining the in-
terpolation map (figure 5a). 
 
 
Table 1. Number of municipalities forming high (High-

High) and low (Low-Low) Ae. albopictus density 
clusters. In brackets, municipalities with a statistically 
adequate monitoring design for measuring species 
population (RV < 0.3). 

 

N. municipalities number forming clustersProvince High-High Low-Low 
Bologna 0 9 (7) 
Ferrara 1 (0) 0 
Forlì-Cesena 1 (0) 2 (0) 
Modena 0 4 (2) 
Parma 3 (1) 4 (0) 
Piacenza 8 (6) 0 
Ravenna 0 0 
Reggio-Emilia 0 1 (1) 
Rimini 3 (2) 0 
 
 
Table 2. Local spatial autocorrelation Moran’s I calcu-

lated for 5 lags distance of 7.5 km each. Pairs’ number 
and Z-values for each index were calculated. 

 

Lag Increment 
(LI) (km) 

Neighbour 
pairs (N) Moran's I Z-value 

0 < LI = 7.5 123 0.42** 4.79 
7.5 < LI = 15.0 435 0.34* 7.30 
15.0 < LI = 22.5 578 0.18* 4.59 
22.5 < LI = 30.0 677 0.17* 4.89 
30.0 < LI = 37.5 727 0.17 4.97 
 

* p < 0.05, ** p < 0.01 
 
 

 
 
Figure 4. 3D trend plot of mean eggs/ovitrap/week cal-

culated for the period between week 21 and 42, for 
municipality areas with RV < 0.3 (N = 160). The X 
and Y axes represent the coordinates of each munici-
pality centroid, while Z axe represents the mean egg 
density value. 

The quality of the prediction map has been examined 
by creating the prediction standard error surface (figure 
5b). The prediction standard errors quantified the degree 
of uncertainty for each location in the surface. Standard 
errors map showed low errors in the province of Bolo-
gna, Modena, Reggio-Emilia, Parma and Ravenna, high 
and medium errors in the province of Ferrara, Rimini 
and in particular Piacenza. 

The Cross-validation statistics (table 3) and results (fig-
ure 6) showed that the predicted values were reasonable 
for map production (linear regression analysis, R2 = 0.25; 
p < 0.05; y = 0.305x + 36.84). 
 
 

 
 

 
 

Figure 5. Universal kriging interpolation map (a) and 
standard error map (b) of mean egg density in Emilia 
Romagna Region (municipalities with RV > 0.3 were 
not considered in the interpolation calculation, and 
were indicated in the map with wired areas). 

 
 
Table 3. Cross-Validation statistics. 
 

Parameter Value 
Mean Error −0.060 
Root-Mean-Square Error 2.400 
Average Standard Error 23.400 
Mean Standardized −0.002 
Root-Mean-Square Standardized 0.880 
Slope Line 0.270 
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Figure 6. Cross validation results. Scatter plot of the 

predicted versus measured values (the slope is lower 
than one; the kriging interpolation tends to underpre-
dict large values and overpredict small values). 
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Figure 7. QQPlot regression results. This shows the 

quantiles of the difference between the predicted and 
measured values divided by the estimated kriging 
standard errors and the corresponding quantiles from a 
standard normal distribution. 

 
 

 
 
Figure 8. Example of environmental informative layers 

overlay: shaded elevation map (Void-filled seamless 
SRTM data V2, 2006, International Centre for Tropi-
cal Agriculture (CIAT), available from the CGIAR-
CSI SRTM 90m Database: http://srtm.csi.cgiar.org) 
overlaid to interpolated egg density map. 

Cross-validation showed low errors near municipali-
ties with about 53 eggs/ovitrap/week (intercept between 
the 1:1 correlation line and the best fit line; figure 6) 
and large errors at higher egg density. The QQPlot re-
gression (R2 = 0.97; p < 0.05; y = 0.872x − 0.002) (fig-
ure 7) showed that some values, in particular the high 
ones, fall slightly far from the straight dashed line, but 
most points fall very close to it, indicating that predic-
tion errors were close to be normally distributed. 

The correlation calculated between mean egg density 
and elevation classes resulted high (R2 = 0.88; p < 0.05; 
y = −9.50x + 63.72). In figure 8, the shaded elevation 
map, acquired from satellite images, is overlaid to the 
interpolated egg density map. Both layers show a simi-
lar spatial trend indicating the relationship found be-
tween ovitraps data and altitude. 

This is only one example of the possible comparisons 
with other informative layers, such as NDVI (Normal-
ized Difference Vegetation Index), temperature and 
rainfall distributions, land use/land cover maps. 
 
 
Discussion and conclusions 
 
In this study we evaluated the usefulness of standard 
ovitraps monitoring methodology, in combination with 
GIS, geostatistical analysis and computer-based map-
ping techniques as practical tool for entomological and 
epidemiological studies and operational use. 

Data analyses showed that the regional Ae. albopictus 
monitoring system adopted was sufficiently reliable to 
determine spatial variation within Ae. albopictus data at 
municipality level. In fact our results indicated that Ae. 
albopictus mean egg density data, aggregated for mu-
nicipality were spatially correlated and significant at a 
distance less than 30 km, in particular between 0 and 7.5 
km, and cross-validation results indicate that estimated 
egg density at unsampled locations were reasonably ac-
ceptable with some limits due to the not uniform distri-
bution of the data. 

Mean egg density data aggregated for municipality 
were sufficient to produce a spatial interpolation at the 
municipality level, while it was not yet sufficient to 
produce spatial interpolation at the locality level be-
cause the number of locality data with a sufficiently re-
liable monitoring pattern (RV < 0.3) were very low 
(only 20 localities), not sufficient for trying an interpo-
lation over the whole region. 

Extrapolation and interpolation of data need to be 
conducted with caution, and the production of com-
puter-generated maps that seem more informative than 
the data upon which they are based should be avoided. 
Anyway, contour smoothed maps obtained from geosta-
tistical analysis and cluster maps obtained from cluster 
detection could be overlaid to other smoothed informa-
tive layers to identify environmental variables such as 
elevation, rainfall distribution, mean temperature, rela-
tive humidity that could influence seasonal mosquito 
population density in the region or could be overlaid to 
epidemiological data to identify health risk. 

Our work was not aimed to find out a risk threshold of 
Ae. albopictus population density for the spread of an 
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epidemic of mosquito-borne disease, but instead to be 
the first leap to develop a practical instrument of evalua-
tion of mosquito population distribution over the whole 
region, aimed to make prediction, verify hypotheses, 
assess the efficacy of mosquito control programs on 
large and local scale. 

Another field of application for the spatial analyses of 
Ae. albopictus egg density data could be the evaluation 
of the efficacy of the control programs performed in dif-
ferent municipalities, whose quality significantly affect 
the mosquito population and the ascription of a munici-
pality to a high or low egg density cluster. 

The comparison between the two municipality groups 
forming clusters, showed that in 2008 Ae. albopictus 
control programs conducted in municipalities with low 
mosquito density were qualitatively different from these 
applied in municipalities with high mosquito density, as 
evidenced by the survey on some key aspects. The for-
mer were characterized by more than five years of Ae. 
albopictus survey and control programs, a standardized 
high quality control on larvicidal treatments that allow to 
reduce the number of treatments in public catch basins 
and the number of adulticides treatments, thanks to a 
more organized entomological inspection service in pri-
vate properties after citizens’ complains. 

A quantitative difference in the mosquito control pro-
grams between the two cluster municipality areas is 
documented by comparing the mean budgets invested: 
49.1 €/ha by the municipalities of the low mosquitoes 
density clusters (that adopted lasting and high quality 
control programs, and 38.4 €/ha, 27% less, by those 
municipalities of the high density clusters (that have in-
complete or newly introduced control programs). 

The results of our study encourage the adoption of 
geostatistics and in general of spatial statistics as effi-
cient tools for Ae. albopictus surveillance and monitor-
ing systems. To summarize, some advantages of the use 
of these spatial techniques are: 

1) Cluster detection/investigation identifies high and 
low significant mosquitoes density areas to be con-
sidered in mosquito control planning. 

2) Smoothed contour maps summarize in one 
frame/layout of simple reading a big amount of 
monitoring data. 

3) Large scale interpolation maps of mean egg den-
sity are useful for understanding environmental 
variables, represented by smoothed contour maps, 
that could promote species development (eleva-
tion, rainfall, vegetation covering, etc.). 

4) Cluster investigation and geostatistics could help 
to understand, at local scale, where mosquito con-
trol programs are achieving satisfactory results and 
where they must be strengthen to better suppress 
Ae. albopictus populations. 

5) In our study, the smoothed map obtained through 
the interpolation of data with an RV < 0.3 allowed 
to make predictions on the egg density in those 
municipalities where the monitoring design was 
not statistically efficient, and standard error map 
evidenced large critical areas in the Ferrara, 
Rimini and Piacenza provinces, in which the moni-
toring pattern need to be increased in order to ob-

tain a better and significant interpolation. 
6) Geostatistics and cluster detection/investigation 

can provide risk assessment maps useful in epide-
miological studies, and could be of crucial impor-
tance for defining an epidemiological threshold. 

On the other side, critical points in adopting geostatis-
tical analysis of entomological data for creating large 
scale interpolation maps can be found in the difficulty 
of assessing a standard procedure to find the best 
variogram model, and in finding the appropriate dataset 
(mean eggs, total eggs, rank, etc.) to satisfy the pre-
requisite of data stationarity, which is necessary for ob-
taining the best interpolation. 

Moreover, while the spatial geostatistical techniques 
used to determine Ae. albopictus population at the large 
scale are suitable for static data collected in a certain 
time period, they do not include any reference about the 
dynamics of population data. To gain this level of in-
formation, it requires at least a monthly updating of the 
local monitoring data. It will also be necessary to pool 
the data collected over several years, being not possible 
yet to implement the number of monitoring stations, due 
to insufficient funding availability. 
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