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Abstract

This study sought to identify patterns of spatial variations in volumetric soil moisture

content (y) of a portion of the Tsukuba grasslands of Japan. The y of the topsoil (0–0.15m

profile) of a square, 100 ha plot of grassland was sampled on a roughly rectangular grid, at the

rate one sample per hectare. Spatial maps of y were developed using ordinary kriging methods.

The use of a kriging estimator in concert with a Gaussian semivariogram, the measurement

error model, and exact interpolation within the grassland were deemed appropriate for the

data collected. Estimated autocorrelation values begin at roughly 0.577 and gradually

decreased towards zero when the distance between points reached roughly 750m. Negative but

non-significant correlations was noted for inter-sampling point distances ranging from 750 to

800m. As the distance further increased, the autocorrelation value became alternatively

positive and negative, suggesting that the soil and ecosystem system exhibit periodic variations

through natural influences. Based on idealized spherical variograms, y values tended to be

dependent for inter-sampling point distances of less than 750m, but independent for distances

beyond 800m.
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1. Introduction

Soil moisture content (y) variations under different climatic and geological
conditions and over different spatio-temporal scales strongly influence solute
transport (Dirmeyer et al., 1999). However, there are very few locations where y is
measured routinely, and those measurements are most often conducted on level
agricultural fields, which are not representative of regional land surfaces (Vinnikov
and Yeserkepova, 1991; Vinnikov et al., 1996). Thus, it is often convenient to model
spatial processes stochastically, allowing models to accommodate the measurement
uncertainty and explain the process under observation (US National Research
Council, 1994). It is commonly accepted that measurements closely proximate in
time or space are much more likely to be alike than widely separated ones (Singh and
Fiorentino, 1996). It is upon this assumption that spatial data analysis methods have
been developed. To be of use, the soil moisture data need to be grouped,
manipulated, or scaled to bring out spatial dependence and independence, as well as
similarities and differences common to areas, or layers of soil (Wang et al., 2001).
One way of detecting such attributes is by their geostatistical correlation structure in
space (Clarke and Dane, 1991). Quantitative estimates of this structure are required
for a number of purposes including interpolation strategies from point data and
estimation of the catchments averages (Goodchild, 1992).

Geostatistics can characterize and quantify spatial variability, perform rational
interpolation, as well as estimate the variance of the interpolated values. Kriging,
a geostatistical technique, is a linear interpolation procedure which provides a
best linear unbiased estimator (BLUE) for quantities that vary in space. The
procedure provides estimates at non-sampled sites. Recently, kriging has been
applied in the environmental field to analyze spatial variability and resolve
site-specific problems (Polhmann, 1993) Log-normal kriging was developed to
account for the frequently skewed distribution of the data under investigation
(Zimmerman and Zimmerman, 1991). This technique transforms the data into a log-
normal formation prior to kriging estimation. Stochastic conditional simulation
techniques, such as sequential Gaussian simulation, can be applied to generate
multiple realizations, including an error component, absent from classical
interpolation techniques. These simulation techniques generate a set of values with
a specified mean and covariance, and also reproduce measured data at several
locations. Along with simulated values, measurements therein can be used to analyze
the spatial distribution of the variable in question. Furthermore, these techniques
have been recently applied to characterize the spatial variability of soil moisture
(Wang et al., 2001).

Many researchers have studied the spatial variability of topsoil moisture content,
using geostatistical methods based on remotely sensed and field-measured data
(Good, 1989). Some studies have reported little spatial correlation of y (Loague and
Green, 1991; Schmugge and Jackson, 1996; Mohanty et al., 2000), whereas Fitzjohn
et al. (1998) suggested that such spatial correlation was evident in the Puebla de
Valles-Retiendas region of central Spain. Thus, while no consensus exists on the
spatial dependence of y; differences in spatial scales from 6 to 3500m suggest that y
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is a time-dependent property and that an evolving spatial dependence may exist
(Davidson and Watson, 1995).

Therefore, in order to comprehensively assess the spatio-temporal structure of y;
further investigation is required in various locations over a large range of scales.
Thus topsoil y; usually very heterogeneous for grid block scales typical of mesoscale
or climatic models, has not been adequately represented in such models. In recent
years, several approaches have been proposed to characterize small-scale land
surface heterogeneity in modelling the land–atmosphere system. This has been the
central focus of a number of recent studies (Hu and Islam, 1997). One approach is to
determine the effect of land surface heterogeneity on the surface feature by using so-
called scale-invariant and surface parameterizations. Another approach is to increase
the resolution of the model grid, dividing the model grid into smaller, presumably
homogenous, subgrid elements and then estimate the surface feature at the subgrid
scale.

In this paper, we present an analytical evaluation of the required subgrid scale for
the y of the topsoil of grasslands at the Meteorological Research Institute (MIR)
in Tsukuba, Japan. Because of soil formation processes and climatic conditions
specific to the region, grasslands are widespread in Japan. The main objectives were
to (i) compare the spatial structure of layer-averaged y; (ii) investigate the
implications of different interpolation strategies, (iii) estimate the variability of y
over a large scale, and (iv) develop a wide-ranging database of y measurements for
the grasslands. Such a database could then serve to evaluate the impact of
uncertainties in climatic model parameters through a direct comparison to field
studies or arrays of y measurements.

2. Materials and methods

2.1. Site description

The 1.0 km� 1.0 km area of grassland under study was situated at the
Meteorological Research Institute (36�30600N–140�704900E), southwest of the
city of Tsukuba, Japan. This 100 ha area was situated within a grassland plain
roughly 3 km from east to west and 2.5 km from north to south, and was surrounded
by line-trees roughly (Fig. 1). Non-grazed, unfertilized, and pesticide-free
short natural grass covered nearly 80% of the research area, trees another 10%,
and roads and offices the remainder. Trees varied from 5 to 10m in height and
had been planted across prevailing slopes or, in the northwest corner, up and
down prevailing slopes for erosion controlling. The mean height of the grass varied
from 0.5 to 1.0m over the year. The study area is on a gentle downward slope
(1/2000) from a central upper contour line dropping towards both the southeast
and northwest (Fig. 1). The soils consist loamy sand (loamy sand, 75% clay,
5% sand) and loam (45% sand, 22% clay) and clay soils (65% clay and 10%
sand). Annual precipitation is 1300mm and the annual mean atmospheric humidity
is 78%.
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2.2. Soil parameter measurements

Measurements of gravimetric soil moisture content to a depth of 0.05m were
obtained for 100 locations distributed over the grassland, using the oven-drying
method (Fig. 1). However, 8-fixed locations (point A, B, C, D, E, F, G and H) were
arranged for continuous observation using TDR in the depth of 0.0–0.05, 0.05–0.10
and 0.10–0.20 through the year of 1999–2001. In October 1999, and January, June
and October of 2000, volumetric soil moisture, y (%), was measured at 100 locations
in the study area, for soil profiles of 0–0.05m. The mean y data for each point across
the four sampling dates without rain case during the sampling time were mapped for
spatial analysis. The sampling method is described in greater detail in Feng et al.
(2002).

The soils were sampled at depth increments of 0.05-m soil using a steel cylinder
with a diameter and height of 0.05m (volume=1� 10�4m3). Samples were dried for
one day at 105�C, weighed and then heated for 4 h at 650�C, to measure the organic
matter content. The percent weight difference between the dried and heated samples
was taken as the organic matter content (Feng et al., 2002). Bulk density was
determined using the known sample volume and the combined oven-dry weight of all
sample material from a given site. Other soil property measurements were measured
only once at permanent sampling points A, E, B, C, D, F, G, and H (Fig. 1) in depth
of 0.0–0.05, 0.05–0.10 and 0.10–0.20 on April 8, 9, 10, 11, 12, 13, 14, and 15, 1999,
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Fig. 1. Sketch of grid observation points in grassland in Tsukuba.

Q. Feng et al. / Journal of Arid Environments 58 (2004) 357–372360



respectively. The detailed procedure is presented elsewhere (Bresler et al., 1969;
Hillel, 1974, 1982). The results of all soil characteristics analyses are presented in
Table 1.

The sampling standard deviations (across dates) of 100 sites of y sampling from
the 0–0.05m surface profile of the MRI grassland are presented in Table 2, with
sampling sites arranged as they are in Fig. 1. The development of a spatial model for
predicting of y at locations within the study area not already sampled in the study
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Table 1

Properties of grassland soil in the top 0.20-m soil profile

Permanent sampling

locations (Fig. 1)

Depth

(m)

Soil characteristicsa

r
(Mgm�3)

Porosity

(%)

Capillary

height

(m)

ywp
(%)

yfc
(%)

ysat
(%)

Organic

matter

(g/kg)

A 0–0.05 1.55 35.46 0.75 1.34 2.65 54.83 11.2

0.05–0.10 1.51 33.45 0.72 1.04 2.46 56.32 10.3

0.10–0.20 1.47 29.03 0.75 1.43 2.02 58.51 8.9

E 0–0.05 1.54 28.57 0.73 1.35 2.61 52.43 5.6

0.05–0.10 1.45 19.97 0.75 1.52 2.16 51.10 8.3

0.10–0.20 1.53 27.99 0.73 0.88 2.62 53.31 7.6

B 0–0.05 1.59 38.91 0.78 0.57 2.19 44.00 10.5

0.05–0.10 1.51 34.88 0.76 1.05 2.40 54.24 12.3

0.10–0.20 1.54 35.73 0.67 0.61 2.63 53.80 10.2

C 0–0.05 1.65 33.85 0.85 1.17 2.79 53.16 8.6

0.05–0.10 1.63 38.81 0.82 1.20 2.93 49.39 6.9

0.10–0.20 1.62 29.25 0.85 1.23 2.78 59.44 7.3

D 0–0.05 1.69 37.60 0.83 1.25 2.88 48.84 10.2

0.05–0.10 1.65 28.60 0.75 0.56 2.68 56.70 11.3

0.10–0.20 1.67 35.39 0.78 0.58 2.80 50.42 10.5

F 0–0.05 1.57 38.99 0.72 0.89 2.81 51.73 5.6

0.05–0.10 1.57 36.18 0.76 1.12 2.74 54.24 7.8

0.10–0.20 1.57 41.15 0.77 1.02 2.85 49.66 8.3

G 0–0.05 1.68 37.65 0.85 1.03 2.78 50.58 10.5

0.05–0.10 1.65 42.00 0.82 0.78 2.97 48.11 10.4

0.10–0.20 1.63 38.05 0.85 0.77 2.81 51.73 8.4

H 0–0.05 1.61 38.46 0.74 0.89 2.70 50.84 11.0

0.05–0.10 1.62 38.87 0.75 0.56 2.77 49.66 13.2

0.10–0.20 1.61 38.70 0.73 0.45 2.80 49.57 9.7

ar; bulk density; ywp; percent volumetric soil moisture at permanent wilting point; yfc; percent

volumetric soil moisture at field capacity; and ysat; percent volumetric soil moisture at saturation.
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was the focus of further study. Rainfall was recorded by automatic datalogged rain
gauges located at points C and F in Fig. 1.

2.3. Statistical analyses

In this study, the descriptive statistics of the frequency distributions, such as the
mean, standard deviation and CV, were calculated using SAS software (SAS
Institute Inc., 1992) and normality was assessed using the one-sample Kolmogorov–
Smirnov (KS) test for goodness-of-fit. Semivariograms were constructed and fitted to
curve types.

The simulation of the spatial variance in grassland y; required the estimation of
the number of samples required, N ; given a specified probability, a;

N ¼ t2as2=D2; ð1Þ

where D is the specified limit, expressing how close of an estimate is needed, s2 are
the sample variances, and ta is the Student’s t with (N � 1) degrees, at the a
probability level (here 95%).

The sample covariance function was then:

rðhÞ ¼ Cov½ZðxÞ;Zðx þ hÞ
=fD½ZðxÞ
D½Zðx þ hÞ
g; ð2Þ

rðhÞ ¼ Cov½ZðxÞ;Zðx þ hÞ
=d2; ð3Þ

where Cov is the covariance for any two values of Z at a distance h apart, d2 is
the variance of Z; h is the lag distance, rðhÞ is the sample correlogram, and ZðxÞ;
Zðx þ hÞ are the measured soil moisture contents at points x and x þ h:
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Table 2

Sampling standard deviation (n ¼ 4; October 1999, January, June, October 2000) for 100 volumetric soil

moisture content sampling sites (0–0.05m depth) within the MRI grassland

North–south

grid location

East–west grid locationa

a b c d e f g h i j

1 0.23 0.56 0.89 0.36 1.20 0.98 0.33 0.45 1.21 0.55

2 0.07 0.92 0.52 1.01 1.02 0.42 0.35 1.00 0.36 0.49

3 0.96 0.52 0.41 0.44 0.86 0.65 1.23 0.34 0.96 0.48

4 0.32 0.45 0.66 0.55 1.30 0.73 0.15 0.31 0.62 0.73

5 0.04 0.57 0.80 0.67 0.07 0.99 0.57 1.20 0.63 0.92

6 1.41 1.17 0.80 0.34 0.33 0.72 0.58 0.29 0.16 0.50

7 0.81 0.84 0.58 1.17 0.59 1.04 0.85 0.38 0.65 0.89

8 0.25 0.46 1.02 0.28 1.12 1.23 0.46 0.33 0.45 0.40

9 1.26 0.85 0.56 0.78 0.15 1.20 0.50 0.38 0.56 0.39

10 0.23 0.52 0.35 0.89 0.22 1.23 0.89 0.56 1.19 0.76

aa, byj is shown in Fig. 1.
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The semivariance, gðhÞ; was estimated as

gðhÞ ¼ ½1
2
nðhÞ


X
½ZðxiÞ � Zðxi þ hÞ
2 ½i ¼ 1; 2;y; nðhÞ
; ð4Þ

gðhÞ ¼ d2½1� rðhÞ
; ð5Þ

where nðhÞ is the number of pairs of locations separated by a lag distance h:
The spherical model, g1ðhÞ; was calculated as follows:

g1ðhÞ ¼ C0 þ C1½1:5ðh=aÞ2 � 0:5ðh=aÞ3
 for 0ohoa; ð6Þ

g1ðhÞ ¼ C0 þ C1 for h ¼ a; ð7Þ

g1ðhÞ ¼ C0 þ C1½1� eð�h=aÞ
 for h > a; ð8Þ

where C0; a; and C0 þ C1 are the nugget, range, and sill in the idealized variogram.
The nugget is a limiting value of g1ðhÞ for small h values; the sill is a maximum as h

becomes larger; and the range is a distance for which g1ðhÞ has appreciably reached
the sill.

The quality of the semivariogram fit to the data was indicated using a regression
coefficient, R2; and an F -test calculated as (Wang et al., 2001)

F ¼ R2=½1� R2
 � ½n � k
=½k � 1
; ð9Þ

where k is the number of variables in the regression model, and n is the number of
samples.

Several functional models are available for idealized variogram analysis. For the
three and two-dimensional simulation, the variogram model of Eqs. (6)–(8) is
assumed to accurately depict spatial interdependence. The estimate Zest at a non-
sampled point (x0; y0) is then:

Zestðx0; y0Þ ¼
X

liZðxi; yiÞ fi ¼ 1; 2;y;mg; ð10Þ

where Zestðxi; yiÞ are the known values. l1andlm are weights chosen such that Zest is
unbiased.

Even though Zðx0; y0Þ is unknown, the minimum variance can be evaluated in a
manner consistent with the variogram function. The equation for evaluating l is

P
ljgij þ m ¼ gi0 fi ¼ 1; 2;y;mg ; ð11Þ

where gij is

gij ¼ g½ðxi � xjÞ
0:5 þ ðyi � yjÞ

0:5
; ð12Þ

i.e., the value of the variogram function evaluated between points (xi; yi) and
(xj ; yj) with i and j ranging from 1 to m: There are m þ 1 unknowns consisting of the
m weights l1; l2andlm; and the Lagrange multiplier m: In addition to Zi½est
; the
variance of Zestðx0; y0Þ � Zðx0; y0Þ gives an idea of the quality of the estimate.

In comparing two series, one measured and one predicted, with differing
variances, an efficiency factor, E; was selected, where the goodness-of-fit was based
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on E approaching 1.0 (James and Burgess, 1982):

E ¼ 1�
Pi¼n

i¼1ðpi � oiÞ
2

Pi¼n
i¼1ðoi � %oÞ2

; ð13Þ

where n is the total number of observations, oi is the ith observed value, %o is the mean
of observed values, and pi is the ith predicted value.

3. Results and discussions

3.1. Sample number estimates

Horizon boundaries may be more distinct than are the surface boundaries of a soil
classification unit. Consequently, the sampling plan chosen is important, with the
best design being one that provides the maximum precision for a given cost or vice
versa. The principles of soil sampling were outlined by Cline (1944, 1989) and have
not changed materially. One can use Eq. (1) to determine the number of observations
required in future sampling of a population to estimate the mean within B5.00%,
i.e. at the 95% probability level. The number of equally distributed y samples to be
taken over the Tsukuba grassland area were calculated based upon a mean y of
39.23, and sample variance of 27.15 over the entire study area. Assuming confidence
levels of 95%, 99% or 99.9% the Z0:5a values would be 1.96, 2.326, or 3.091,
respectively. If the estimate is to be within 5 [e.g. 39.23% B 5.00%], the calculated
number of samples, according to the above confidence levels would be 4.78, 6.74 and
11.9, respectively. These were rounded up to n ¼ 5; 7; 12 and used as an estimated
number of samples required to be within 5.0m3 (water) per 100m3 (dry soil) of the
correct y with a 95%, 99% and 99.9% confidence, respectively. In the study, we
chose eight fixed locations for continuous soil water measurement, thus, our
confidence in correctly assessing y was slightly greater than 99%, with an estimate
within B5m3 (water)m�3 (dry soil).

3.2. Autocorrelation analysis

The experimental mean and standard deviation of the 100-sample values, sampled
in the order a1, a2, and a10; b1, b2, and b10; and j1, j2, and j10 (Table 2) were 39.23
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and 4.6, respectively. Eq. (2) was used to calculate the correlogram (Fig. 2) or
autocorrelation values rðhÞ: The value of 1.0 obtained at h ¼ 0 was included for
completeness, but for a small positive non-zero value of h; the rðhÞ value was 0.577,
gradually decreasing towards zero at about h ¼ 750m. For h values of 750–800m,
estimated autocorrelation values were slightly negative but not significant. As the
distance h further increased, the correlogram became alternatively positive and
negative. Physical systems exhibiting such a correlogram, include sediment deposits
developed under periodic flooding or under anthropogenic influences. For h values
of 0–750m, the covariance decreased gradually until eventually, at the limit of 750m
the samples were alike and correlation or spatial dependence no longer existed. This
result was obtained regardless of whether the analysis was being done from north to
south or west to east.

3.3. Semivariance analysis

If strong stationary conditions are met, then both nðhÞ and gðhÞ exist and Eq. (4)
must be employed (Perrone and Madramootoo, 1997). Returning to the above 100
samples, we now calculate a sample variogram value for each lag distance, h (Fig. 3).
For small separations, values of y tend to be more alike and, consequently, gðhÞ tends
to be small, on the order of 7.55%. For greater distances, the value of gðhÞ tends to
be larger and eventually reaches about 35% for h ¼ 710m (Fig. 3).

An idealized spherical variogram of gðhÞ is presented for further illustration
(Fig. 3). The idealized variogram parameters for the y of MRI grasslands
with spherical, exponential, linear and linear to sill models were calculated from
Eqs. (6)–(8). The spherical and exponential models best satisfied the hypothesis
according to the F -test (Eq. (9)) and have R2 values ranging from 0.725 to 0.732
(Table 3), though the linear model was also acceptable with R2 ¼ 0:645 (Table 3).
However, the linear model, with a finite sill, was not a valid variogram in the true
sense, and when applied can only be used with confidence for points within the range
limited by the sill (30.981). The higher sill (30.981) of the linear model than those of
the spherical (27.216) or exponential (27.893) models shows that there would be a
significant error if the linear model were used to estimate the y: The spherical and
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exponential models could explain the spatial process very well, especially for small
distances.

The linear variogram was also fit to the data for comparison (Fig. 3) but shows
some lack of spatial fit relative to the others. Wang et al. (2001) suggested that the
ratio of nugget variance to sill variance expressed as a percentage is an indication of
the spatial dependence of the variable concerned. Cline et al. (1989) stated that ratios
between 25% and 75% represented moderate spatial dependence, those below 25%
strong spatial dependence, and all others weak dependence. Given these ranges of
relative spatial dependence, the values of the ratio of nugget variance to sill variance
of 27.74, 12.35, and 35.28 for the spherical, exponential and linear analyses,
respectively, indicate a strong to moderate spatial dependence for semivariograms of
averaged y: Further, Fig. 3 suggests that for sampling points separated by less than
750m, observations will be dependent. From 700 to 800m the observations are
gradually more independent. When the observation distance exceeds 800m the
observation points are fully independent.

3.4. Anisotropic axis orientation

In this analysis, we used principal axes with angles of 0�, 45�, 90�, and 135�

clockwise from the base axis, North. Points aligned sufficiently close to one or
another of these angles (i.e. within B22.30�) were included in the anisotropic
analysis for that angle. In the 0� direction the semivariance values changes clearly,
whereas at the 90� direction changes are small, while at the 45� and 135� directions
change is gradual (Fig. 4). The nugget ranged from 700 to 800m. These analyses
show that no foolproof procedure exists to best-fit every situation. However,
comparing semivariances, nðhÞ (Eq. (2)) and the correlation analysis (Fig. 2) suggests
that the value of both nðhÞ and gðhÞ are similar and Eq. (3) is correct (Table 4). So
Eq. (4) gives a reasonable criterion to judge whether strong stationary conditions are
met or not. The analysis of the 100 samples showed that the variance of soil moisture
content in the MRI grassland was stationary.

3.5. Two-dimensional analysis

A primary motivation for sampling is to make meaningful estimates of values at
nearby positions in space and time. If we first assume the values to be independent,
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Table 3

Isotropic variogram parameters for soil moisture content of the MRI grassland

Parameters Nugget (C0) Sill (C0 þ C1) Range (3A0) Proportion

[C1=ðC0 þ C1)]

Correlation

(R2)

Spherical 7.550 27.216 682.00 0.723 0.725

Exponential 3.447 27.893 711.00 0.876 0.732

Linear 10.933 30.981 811.00 0.647 0.645

Linear to sill 6.831 25.715 404.00 0.734 0.684
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the best estimate for an unmeasured point will be the mean. However, for correlated
values, nearby values are estimated by interpolation. Nowadays, one uses the kriging
estimate methods of Krige (1966a, b), based largely on random function theory
(Matheron, 1973; Journel and Huijbregts, 1978). Predicting unknown y based on
n � 1 sampling points and comparing it to the removed measured value using the
root mean square (RMS) can allow one to compare two or more methods of
interpolation, and select the best one. If the values are independent of their
neighbors, the best prediction value is the sample mean, and RMS will be
approximately the same as the sample standard deviation, s; which can also be used
as a standard for the interpolation.
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Table 4

Comparison of rðhÞ values obtained from Eq. (2) or from the sample correlation analysis (Fig. 2). The

coefficient of efficiency, E; for all 40 pairs=0.5756385

rðhÞ Eq. (2) Fig. 2 Eq. (2) Fig. 2 Eq. (2) Fig. 2 Eq. (2) Fig. 2 Eq. (2)

Fig. 2

0.504 0.512 0.153 0.142 �0.03 0.02 �0.097 �0.099 �0.606 �0.661

0.566 0.567 0.169 0.156 �0.192 �0.185 �0.153 �0.136 �0.097 �0.058

0.45 0.443 0.256 0.223 0.071 0.042 �0.09 0.002 �0.659 �0.669

0.397 0.385 0.165 0.164 �0.071 �0.43 �0.313 �0.330 �0.129 �0.139

0.29 0.285 0.124 0.112 �0.018 �0.001 �0.087 �0.058 �0.39 �0.445

0.298 0.302 �0.115 �0.109 0.015 0.01 �0.441 �0.442 �0.177 �0.233

0.317 0.3156 0.191 0.120 �0.043 �0.012 �0.573 �0.573 0.313 0.441

0.185 0.178 �0.088 �0.063 �0.028 �0.028 �0.443 �0.443 0.228 0.228
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Fig. 4. Principal axis variogram for the spherical values of MRI field: (A) 0� semivariance and distance;

(B) 45� and 135� semivariance and distance.

Q. Feng et al. / Journal of Arid Environments 58 (2004) 357–372 367



Based on kriging analysis, and the use of Eqs. (6)–(8), a two-dimensional kriging
map of y (Fig. 5) and the associated variance map (Fig. 6) were generated for the
MRI grassland. A high y (>40%) region existed through the middle-north portion
of the field, extending from west to east, while a sizable low y (o40%) area was
present in the south central region. The kriging estimates produced smooth contour
(Fig. 5) that approximated the general form of the original contours. Standard errors
of predicted values were greatest, as expected, around the borders of the field (Fig.
6), with coefficients of variation of 2–3%, suggesting nonetheless a good prediction

ARTICLE IN PRESS

Fig. 5. Map of observation points contours by kriging.
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ability. The kriging variance indicates which regions’ y tends to be predicted with the
greatest confidence. The mean error over the study area was 1.71, which is well below
5%. The results presented imply that the kriging estimator with Gaussian
semivariogram and measurement error models was appropriate and that exact
interpolation can be used in this grassland.

In order to check the difference between y predicted by kriging and field
observations of y; three sets of eight y samples were obtained within the study area,
one in each of January, June and October 2001 (Table 5). In Table 5 an E value of 1
represents a perfect match, a value of 0 (zero) represents a match no better than
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Fig. 6. Map of observation points contours by the kriged variance.
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substituting the mean of measured values, and progressively more negative numbers
represent poorer and poorer matches. The relative error between the predicted and
observed is less than 8.3 in the whole 8 fixed locations, except for point E, the relative
error in the other points is less than 2.7 in three seasons (Table 5). The higher relative
error at sampling point E may be related to the low and variable bulk densities of the
different soil layers within the top 0.20m at that site soil layer (Table 1). This will
require a further investigation. The comparison suggests that kriging estimates are
appropriate and that the interpolation method can be used in the study area.

4. Conclusions

The analyses performed to establish the spatial variance in y for the MRI
grassland and derived conclusions can be generalized as: A sample variogram value
suggests that for small separations, values of y tend to be more alike and,
consequently, gðhÞ tends to be small, on the order of 7.55%. But for greater
distances, the value of gðhÞ tend to be larger and eventually reaches about 35% for
h ¼ 710m. Increasing the value of the lag distance, h; from 0 to 750m, the y
covariance decreased gradually until eventually, at the upper limit, samples were
alike and the correlation or spatial dependence non-existent. An idealized spherical
variogram also showed that for a distance of less than 750m between observations,
these would be dependent. Over the range of lag distance, h; from 0 to 750m, along
the base direction, North, the semivariance value changed quickly, in the 45� and
135� directions change was more gradual, whereas in the 90� orientation changes
were small. From 750 to 800m the observations became gradually independent
(Fig. 4). When the lag distance exceeded 800m, observation points were independent.
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Table 5

Coefficient of efficiency, E; site-wise across sampling dates, sampling date-wise across sampling sites, and

overall for the difference between predicted (pred.) and observed (obs.) values of volumetric soil moisture

content, in the year of 2001

Permanent sampling

locationa
Observed and predicted y E

January June October

Obs. Pred. Obs. Pred. Obs. Pred.

A 33.46 33.08 34.46 35.02 35.33 35.46 0.729

E 38.17 41.34 41.02 38.27 40.48 38.50 �3.697

B 35.91 36.21 35.30 35.91 36.71 35.97 �0.010

C 43.85 42.85 43.50 43.66 42.37 43.05 �0.243

D 37.61 37.10 42.5 42.6 43.16 42.62 0.969

F 37.09 37.21 38.41 38.09 38.19 37.99 0.843

G 36.65 37.65 40.22 39.81 38.25 37.63 0.757

H 39.70 38.90 40.17 39.89 39.67 38.98 �6.595

E 0.796 0.881 0.879 0.882 (all)

aLocation of sites shown in Fig. 1.
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The spherical and exponential models best satisfied the hypothesis according to
the F -test. The high sill of the linear model compared to that of the spherical or
exponential models showed that there would be a significant error were the linear
model used to simulate y: The spherical and exponential models could explain the
spatial process very well, especially for small distances. A linear variogram was also
fit to the data for comparison purposes but showed some spatial lack of fit relative to
the other two. The analysis of the 100 samples showed that the variance of y in the
MRI grassland was stationary and indicates strong to moderate spatial dependence
for the semivariogram of mean y in the study.

Given that the mean error over the study area is only 1.71%, the use of the kriging
estimator with Gaussian semivariogram and measurement error models was deemed
appropriate, and would allow exact interpolation over the entire grassland area. This
suggests that y exhibits letter changing spatial dependence in the direction of north–
south or east–west, however, the final choice of model should be based upon the
investigators knowledge of hydrology, of the physical process at work, and the
eventual intended use of the model. The main reason for this is that spatial analysis
covers a very broad spectrum of statistic methods, and to do a comprehensive
statistical analysis requires more than simply the fitting of a model.

If Kriging methods are to be used, then empirical semivariograms should be
constructed, probably using different binning techniques and different variogram
estimators. The variograms presented an irregular pattern for 700 > h > 600m and
this was perhaps associated with the small number of pairs of observations for this
range of h values. This is an important point given that the range of dependence was
near this value.
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