
A GEOSTATISTICAL ANALYSIS OF THE GEOGRAPHIC DISTRIBUTION OF
LYMPHATIC FILARIASIS PREVALENCE IN SOUTHERN INDIA

A. SRIVIDYA, E. MICHAEL, M. PALANIYANDI, S. P. PANI AND P. K. DAS
Vector Control Research Centre (ICMR), Pondicherry, India; Department of Infectious Disease Epidemiology, Imperial College

Medical School, London, United Kingdom

Abstract. Gaining a better understanding of the spatial population structure of infectious agents is increasingly
recognized as being key to their more effective mapping and to improving knowledge of their overall population
dynamics and control. Here, we investigate the spatial structure of bancroftian filariasis distribution using geostatistical
methods in an endemic region in Southern India. Analysis of a parasite antigenemia prevalence dataset assembled by
sampling 79 villages selected using a World Health Organization (WHO) proposed 25 × 25 km grid sampling procedure
in a 225 × 225 km area within this region was compared with that of a corresponding microfilaraemia prevalence dataset
assembled by sampling 119 randomly selected villages from a smaller subregion located within the main study area. A
major finding from the analysis was that once large-scale spatial trends were removed, the antigenemia data did not show
evidence for the existence of any small-scale dependency at the study sampling interval of 25 km. By contrast, analysis
of the randomly sampled microfilaraemia data indicated strong spatial contagion in prevalence up to a distance of
approximately 6.6 kms, suggesting the likely existence of small spatial patches or foci of transmission in the study area
occurring below the sampling scale used for sampling the antigenemia data. While this could indicate differences in
parasite spatial population dynamics based on antigenemia versus microfilaraemia data, the result may also suggest that
the WHO recommended 25 × 25 km sampling grid for rapid filariasis mapping could have been too coarse a scale to
capture and describe the likely local variation in filariasis infection in this endemic location and highlights the need for
caution when applying uniform sampling schemes in diverse endemic regions for investigating the spatial pattern of this
parasitic infection. The present results, on the other hand, imply that both small-scale spatial processes and large-scale
factors may characterize the observed distribution of filariasis in the study region. Our preliminary analysis of a
mountain range associated large-scale trend in the antigenemia data suggested that a nonlinear relationship of infection
prevalence with elevation might be a factor behind such observed global spatial patterns. We conclude that geostatistic
methods can provide a powerful framework for carrying out the empirical investigation and analysis of parasite spatial
population structure. This study shows that their successful application, however, will crucially depend on our gaining
a more thorough understanding of the appropriate geographic scales at which spatial studies should be carried out.

INTRODUCTION

Gaining a better understanding of the spatial distribution of
parasitic diseases within endemic regions is increasingly rec-
ognized as being critical to the rational design and monitoring
of parasitic control programs.1–9 Not only can such knowl-
edge lead to more precise mapping of the distribution of para-
sites within endemic regions, thus enabling more precise iden-
tification/estimation of the communities at risk and prioriti-
zation of target areas for control,3,6,9,10 but improved
understanding of the spatial structure of parasitic infection or
disease processes (the strength and extend of focality or lo-
cality of transmission) will also be critical to making more
realistic assessments of the persistence, threshold of transmis-
sion, dynamics of spread, and hence potential recovery of
infection following control interventions.11–15 This is likely to
be particularly true for vector-borne diseases, which are ex-
pected to exhibit high degrees of heterogeneity in transmis-
sion patterns even at microspatial scales.16 At a practical
level, improved understanding of spatial variation will also
allow an assessment of the spatial scales at which various risk
factors underlying the observed disease distribution within an
area operate as well as potentially facilitating the detection of
the optimal spatial scale for applying a sampling framework
for conducting parasitic surveys or a particular community-
based control option.14,17,18

There have been several recent attempts to map the spatial
distribution of lymphatic filariasis at various scales, from the
global to national levels.6,9,10,19,20 Based largely on aggre-
gated spatial data (assembled from the published literature or
national parasitologic survey archives) on microfilaraemia

prevalence, these efforts, with the exception of Lindsay and
Thomas10 have largely tended to focus on describing the
geographic distribution of filariasis infection across various
areal boundaries (regional, national, state, and district) to
highlight both the areal extent as well as the observed varia-
tion in the risk of infection within each studied region. While
these attempts have contributed importantly to identifying
and delimiting areas at risk, including target areas for priori-
tized treatment at global, regional, and national levels, they
provide much less information regarding the spatial structure
of either filariasis infection or disease. Similarly, while the
work by Lindsay and Thomas,10 which attempted to model
filariasis distribution in Africa using ecologic correlates be-
tween environmental variables and the observed distribution
of point prevalence data, identified several surrogate climac-
tic factors likely to underlie the distribution of the disease on
that continent, such global attempts address only one compo-
nent of sample spatial variation, namely, large-scale trend or
change in mean gradient in the data.21 They provide little
information on local variation or small-scale spatial depen-
dency structure, which may often be obscured by the large-
scale interpolations generated by such (mean function) meth-
ods.14

In this study, we use geostatistic techniques to investigate
the spatial structure of observed bancroftian filariasis preva-
lence distribution among communities in a South Indian en-
demic region. Geostatistic methods (variogram analysis and
kriging) facilitate the dissection of the processes underlying a
given spatial dataset into both large- and small-scale compo-
nents of variation and thus provide a powerful set of tools for
characterizing the spatial structure of a mapped variable.21–24
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This investigation forms part of a multicountry study initiated
by the World Health Organization (WHO) Rapid Geographi-
cal Assessment of Bancroftian Filariasis (RAGFIL) pro-
gram,25 which advocated using a sampling grid of either 25 ×
25 km or 50 × 50 km for selecting communities to undertake
rapid filariasis prevalence surveys (by the application of rapid
assessment procedures (RAP) surveys of filariasis prevalence,
such as physical examination by the health workers
(PEHW)26 or estimation of parasite antigenemia prevalence
by the use of the immunochromatographic card test (ICT)27

to map and investigate filariasis distribution. While the pri-
mary analysis is based on filariasis antigeneamia prevalence
data obtained from 79 communities selected from an endemic
region in South India using the 25 × 25 km grid sampling
framework, comparison is also made with the spatial structure
of microfilaraemia prevalence data obtained from a random
sample of 119 villages within the same region (used for a
separate study validating different RAP methods26), to illus-
trate the importance of spatial sampling scale for the detec-
tion and quantification of spatial structure. These results are
discussed in light of the WHO advocacy of a common grid
dimension for grid sampling of communities for the rapid
mapping and spatial analysis of filariasis distribution in di-
verse endemic regions.

MATERIALS AND METHODS

Study site. An area covering 41,950 square kms (pertaining
approximately to a square of 225 × 225 km) lying between

78°9�25� and 80°13�48�east, and 11°0�54� and 13°2�31� north in
Southern India was selected for the main (analysis of anti-
genemia distribution) study (Figure 1). This area covers a
total population of 12.5 million people distributed in 7,680
villages. The area falls partly under the tropical wet and dry
zone and partly under the semiarid climatologic zone of India,
bounded in the east by the Bay of Bengal. The area covers 13
districts in four South Indian states (ten districts from Tamil
Nadu and one each from Andhra Pradesh, Karnataka, and
Pondicherry). The districts covered in this study area are Vil-
lupuram, Chengleput, Tiruvannamalai, Vellore, Dharmapuri,
Salem, Perambalur, Cuddalore, Thiruchirapalli, Thiruvarur,
and Erode in Tamil Nadu, Chithoor in Andhra Pradesh,
Kolar in Karnataka, and Pondicherry Urban Town. Out of 13
districts, only six districts were completely covered in the
study area (Figure 1). The second dataset pertaining to mi-
crofilaraemia distribution was derived as shown in Fig.1 (in-
sert) by random sampling of villages within a smaller subsite
lying between 78°73� and 79° 8� East and 11° 25� and 12° 56�

north within this region.
Infection survey methodology. Selection of villages within

the study site for generating the filariasis antigenemia preva-
lence dataset was carried out according to the grid sampling
procedure advocated by the RAGFIL program.25 Briefly, this
entailed placing grids of 25 × 25 km dimension within the
chosen 225 × 225 km study area (adjusted on the right for the
Bay of Bengal [Figure 1]), followed by choosing of villages
nearest to each grid node (intersection point of each X [lon-
gitude] and Y [latitude] lines of the grids) for prevalence

FIGURE 1. Map of the South Indian filariasis endemic region showing the site of the Rapid Geographical Assessment of Bancroftian Filariasis
study (the 25 x 25 km gridded area (see text)) and the enclosed area where the microfilaraemia prevalence data used in this study were sampled.
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survey by the ICT method. This resulted in the selection of 79
inhabited intersection villages for the study, with the name,
geographic coordinates (collected using a geographical posi-
tioning system [GPs]), population size and area of each en-
tered into a spreadsheet program. Within each village, 50
adult males above 15 years of age, and 40 households were
selected for estimating antigenemia prevalence within the
community using the ICT card test.26,27 The number of house-
holds (40) to be sampled per village was based on the finding
that on average in rural India 2 to 3 adult males would be
available per household; the selection of households them-
selves was performed by first listing the total number of
households in the village followed by estimating the sampling
interval (total number of households/40) for the systematic
selection of household units for the study. The first household
is selected randomly (by choosing a number randomly be-
tween one and the sampling interval), and the others are
chosen by the cumulative addition of the sampling interval to
each previous number as described elsewhere.28

As far as the data for microfilaria (mf) prevalences are
concerned, these villages were randomly selected from three
districts under different field studies conducted by the Vector
Control Research Centre(VCRC).26,27,29 In each village,
7–10% of the population from randomly selected households
were included in the microfilaraemia surveys. Microfilaria ex-
amination was undertaken using 20 ccm blood smears col-
lected from each individual selected for these surveys.

Spatial analysis. We used basic exploratory data analysis
(EDA) and visualization methods specific to the analysis of
spatial data, such as data posting and contour/perspective
plots (effective for initial assessments of spatial trends in the
data), geostatistical methods, and large-scale trend modeling
methods (fitting of trend surfaces and generalized additive
modeling), to investigate the spatial structure of filariasis in-
fection.
EDA methods. For geostatistical data, posting data meth-

ods not only allow the display of sampling locations but by
varying the size of the plotting symbol proportional to the
plotted attribute value also the visualization of spatial clusters
and trends in the data.24,30 Similarly, we also used two- and
three-dimensional trend visualization tools, such as contour
and perspective plots (derived using local spatial interpola-
tion methods31), as additional tools for displaying and explor-
ing spatial trends. Raw, untransformed data (antigenemia and
microfilaraemia prevalence), were used in this initial stage of
analysis.
Geostatistical analysis. Small-scale spatial dependency or

structure in the present data was investigated by semivari-
ogram analysis.21–24,32 Because histograms of the data for
both antigenemia and microfilaraemia prevalence indicated
negatively skewed distributions, a logarithmic transformation,
ln(N + 1), was applied to the data before the analysis was
performed. The semivariogram provides a measure of spatial
correlation by describing how sample data are related with
distance and direction. It plots �(h), one half the average
squared difference between paired data values, versus h, the
distance or lag separating the pairs.21–24 The shape of this
plot summarizes the type of spatial structure or dependence
and the range (distance) over which this dependence occurs.
If there is spatial dependence among the data, �(h) typically
increases with separation distance h, may level off and even
decrease after a certain distance. The value of �(h) when the

semivariogram levels off is called the sill (c), and the distance
h at which the sill is attained is called the range (a); the range
represents the maximum distance at which there is spatial
continuity. The semivariogram at zero lag �(0) must be zero,
but in reality the extrapolated semivariogram usually inter-
cepts the ordinate at a positive value known as the nugget
variance (b). The nugget effect can rise from several factors
including sampling error and spatially dependent variation
occurring over distances much less than the sampling interval.
In some cases, the sample semivariogram may be completely
level. This occurs in spatially random or uniform data and
implies no spatial contagion in the data at the scale being
sampled. In other cases, it may be that the increase of �(h)
seems to have no limit: the infection properties have no finite
variance. Such semivariograms are said to be unbounded. If
all of the semivariograms are identical regardless of the di-
rection of h, the spatial structure of the sample data is said to
be isotopic. The spatial correlation then depends only on the
distance of separation, h, not on the direction. When the semi-
variogram is a function of the direction of h, the spatial struc-
ture is said to be anisotropic. Maximum h was set as half the
maximum interpoint distance, and equal- sized distance
classes were used in all cases. Finally, because semivariogram
values �(h) are calculated only for discrete-distance classes, it
is necessary to fit a model to �(h) as a function of h to obtain
values of �(h) for all values of h. Because the estimated semi-
variogram of microfilaraemia was bounded we tested here the
fits of the exponential, spherical and gaussian models.23

Kriging is a linear interpolation procedure that allows the
prediction of unsampled values of a variate that shows spatial
correlation.21–24 It calculates predictions of unsampled values
based on the model of the covariance of the observations
(estimated for example by the fits of the various semivari-
ogram models) at known locations. However, because the
primary antigenemia prevalence data did not show spatial
correlation, we do not perform this operation in this study.
Spatial trend analysis. Large-scale spatial trends in the data

were estimated in this study by either conducting trend sur-
face analysis using weighted least squares31 or by fitting gen-
eralized additive models (GAMs) using sample location co-
ordinates and any other spatial covariate as predictors.24

Statistical evidence for spatial autocorrelation in the residuals
from these analyses or indeed the raw data were evaluated
using the Moran’s I statistic.33

All the analyses above were carried out using the functions
provided in the software package Splus 2000 (Mathsoft, Inc,
United Kingdom) and its companion spatial analysis module
S+SpatialStats.24

RESULTS

Table 1 summarizes the two filariasis prevalence datasets
used in this study and highlights the wide range in prevalence
observed among the sampled communities for each of the two
measures of infection. The corresponding spatial plot of the
raw antigenemia prevalence values is shown in Figure 2 and
displays the spatial variation in the data. In particular, the plot
indicates that a major feature of the observed geographic
distribution for this variable is the occurrence of an apparent
large-scale trend for high-antigenemia prevalence ranging
from the south-southwest corner towards the north-northeast
regions of the study area.
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Given the trend shown in Figure 2, we begin our analysis of
filariasis population spatial structure by calculating separate
experimental semivariograms for the logarithmically trans-
formed antigenemia data in the a) north-south (N-S), b)
northeast-southwest (NE-SW), c) east-west (E-W), and d)
northwest-southeast (NW-SE) directions using a tolerance of
11.25° in each direction (Figure 3). As expected given the
trend, the semivariograms showed differences in spatial de-
pendence with direction, i.e., the existence of apparent an-
isotropy in the spatial structure of the sampled data. In par-
ticular, while the N-S and E-W directional semivariograms
were similar with an increase in �(h) values to a similar sill
around a range of approximately 66 kms, spatial dependency
in the data appeared different in the NE-SW and NW-SE
directions. The NE-SW direction yielded a generally increas-
ing semivariogram while the NW-SE direction showed a pat-
tern of an increase followed by a slight decrease in �(h) values
with increasing distance (Figure 3b,d). These different spatial
dependencies may reflect true differences in the spatial struc-
ture of the observed antigenemia prevalence along these di-
rections (ie., true anisotropy) or else they may reflect an ar-
tifact of spatial trends in the data (Figure 2).
Such pseudoanisotropy may be revealed by reestimating

the semivariograms following the removal of large-scale spa-
tial trend(s) from the data.24 Note that estimating the semi-
variogram of a variable strictly also requires that we remove
large scale spatial trends to meet the requirement of intrinsic
stationary in the measured data over the entire sample
space.21–24 We achieved trend removal in this study by fitting
a generalized additive model (GAM) to the log ICT preva-
lence data using locally weighted regression smooth functions
of latitude and longitude as predictors31,34 and subjecting the
residuals from this model to reanalysis by variography. The
fitted model (results not shown) indicated a significant non-
linear trend in the data for longitude (F � 3.21, df � 1,2.5, P
� .03) but not for latitude.
The corresponding directional semivariograms using the

GAM residuals are plotted in Figure 4a, and show not only
similar patterns (except for a slightly lower �(h) values for the
NE-SW direction) following the removal of large-scale trend,
but also an apparent lack of small-scale spatial variation in the
data along any of the four directions. This pure nugget effect
is more clearly seen in the overall omnidirectional experimen-
tal semivariogram estimated for the residuals (Figure 4b),
indicating that the apparent small-scale structures and anisot-
ropy depicted in Figure 3 for the undetrended log ICT preva-
lence data are largely a function of the large-scale spatial
trend observed for the data (Figure 2).
Available information on landscape features in the study

region that may explain this coarse-scale trend was limited in
this investigation to elevation and distance from the sea. A

GAM analysis of the distribution of log ICT prevalence as a
function of these predictors suggests a likely non-linear role
for elevation (F � 3.28, df � 1,2.4, P � .013) but not for
distance from the sea. Figure 5 shows that the apparent as-
sociation of the ICT high prevalence trend with the mountain
range in the study area may partly be a function of this non-
linear relationship between prevalence and altitude. The re-
sults show that in general high prevalences of infection coin-
cided (expect for the southeast region) with the intermediate
levels of altitude (Figure 5c), which presumably occurred
along the ridges of this mountain range (Figure 5a,b).
The lack of evidence for small scale structure in the ICT

prevalence data does not imply that spatial dependence in the
distribution of filariasis infection in this region may not occur
at spatial scales smaller than that measured in this study (ie.,
< 25 km). Here, we address this question of the impact of
sampling scale in investigations of the population spatial
structure of filariasis by undertaking a spatial analysis of a
separate dataset on the geographic distribution of commu-
nity-level microfilaraemia prevalence available with us from
the present study area (Figure 1). This dataset was con-
structed from a random sample of 119 villages within a
smaller sub-region of the study site.26 Figure 6a plots the
sample locations of this survey and indicates the essentially
random nature (although some gaps exist in the center of the
sampling space) of the survey carried out. The corresponding
perspective plot (Figure 6b) of the data reveals the occur-
rence of marked spatial heterogeneity in the distribution of
this infection variable within this area, with a major cluster of
high prevalence in the center, smaller local areas or hotspots
of infection around the central region, and a variable trend in
high microfilaraemia prevalence running along the south-
north direction. As in the case of the antigenemia data, we
begun the spatial analysis by first removing the apparent

FIGURE 2. Spatial plot showing the location and magnitude of the
raw immunochromatographic card test (ICT) prevalence data. Sym-
bol sizes are proportional to the ICT prevalence measured in each
study location.

TABLE 1
Characteristics of the sample datasets used in the study

Infection
parameter Sampling method

No.
villages
sampled

Mean
prevalence

(%)

Range of
prevalence

(%)

Antigenemia* 25 × 25 grid
sampling

79 8.68 0–38.0

Microfilaraemia† Random selection 119 3.10 0–20.2
* Measured using the immunochromatographic card test card test27

† Based on parasite detection using 20 ccm blood samples
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large-scale trend observed in Figure 6b by fitting a GAM to a
logarithmic transform of these data using the spatial coordi-
nates of each point as predictors. As shown in Figure 7a, this
yielded a significant effect for latitude as the major factor
underlying the large-scale trend hinted at in Figure 6b. The
corresponding experimental omnidirectional semivariogram
for the detrended microfilaraemia data is shown in Figure 7b
(directional semivariograms did not differ appreciably from
each other and so not shown) and provides clear evidence for
spatial dependence or autocorrelation in the data. An expo-
nential model of the form:

��h� = c0 + c�1 − exp� −
h

r� ( 1)

where c0 denotes the nugget, c the sill and r the distance
parameter which defines the spatial extent of the model, and
portrayed by the line in Figure 7b, gave the best least squares
fit to these data in comparison with the spherical and gaussian
models (as assessed by the residual sum of squares between
the theoretical model and the empirical semivariogram24).

The parameter values of the fitted model suggest the exis-
tence of strong spatial continuity up to a range of ≈ 6.6km and
a nugget effect (0.025) that was approximately one fifth of the
sill (0.115) (i.e., approximately 80% of the average sample
population variation appeared to be spatially dependent35).

DISCUSSION

The major finding of this study is that once large-scale spa-
tial trends were removed, there appeared to be no indication
in the present South Indian filariasis endemic site for small-
scale spatial dependency in the distribution of antigenemia
prevalence at the investigated sampling scale of 25 kms. Our
analysis of microfilaraemia prevalence distribution from a
subregion within this endemic zone suggests that this is likely
to be a result of infection aggregation or local spatial variation
(rather than measurement error or purely random variation)
occurring in the case of infection at scales smaller than the
minimum sampling interval used for the ICT survey. These
results suggest that the WHO proposed sampling grid of 25 x

FIGURE 3. Directional experimental semivariograms for the log immunochromatographic card test prevalence (Ln (N + 1)) data in the (a)
north-south, (b) northeast-southwest, (c) east-west, and (d) northwest-southeast directions before trend removal. Note that separation distance
is in degrees (1° approximately equal to 112 kms).
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25 kms for the rapid mapping of filariasis antigenemia preva-
lence (as proposed in the RAGFIL program25) could have
been at too coarse a scale for describing and modeling the
likely local spatial variability in filariasis infection in this study
region, a conclusion which clearly has major implications for
the execution of the multicenter RAGFIL program as fol-
lows.

First, it suggests that caution must be exercised when at-
tempting to apply uniform sampling schemes in different en-
demic regions for investigating spatial patterns of filariasis
infection given that the appropriate scale critical to the de-
tection and quantification of such variation is likely to
vary depending on variables as diverse as the size and shape
of the study area (the sampling frame or spatial extent of

FIGURE 5. The associations between immunochromatographic card test (ICT) prevalence, elevation and the mountain range in the study area.
(a) Perspective plot of the local trend surface for elevation in the Rapid Geographical Assessment of Bancroftian Filariasis area, showing the
mountain range occurring in this area in the southwest to north direction. The trend surface was created using the interp function in Splus, which
interpolates local surfaces based on fitting a fifth order trend surface within each triangle of a Delaunay triangulation of the data points.31 (b)
Spatial plot of log ICT prevalence overlaid on a contour plot of elevation indicating raised infection (expect for the southeast region) along the
slopes of the mountain range. The interp function as described above was used as the interpolation procedure for creating the shown contours.
(c) The nonlinear relationship between Log ICT prevalence and altitude. Plot shows both observed elevation values at each sampled location and
the fit (solid line) of the additive model described in the text to these data. The result shows that prevalence increased with elevation up to some
1500 m before declining thereafter.

FIGURE 4. (a) Directional experimental semivariograms of the residuals of log immunochromatographic card test (ICT) prevalence in the
north-south (closed squares), northeast-southwest (pluses), east-west (closed diamonds), and northwest-southeast (inverted triangles) directions
after trend removal in the Rapid Geographical Assessment of Bancroftian Filariasis study area. (b) Omnidirectional experimental semivariogram
for the detrended log ICT prevalence data showing constant �(h) values or a pure nugget effect. The lack of spatial autocorrelation in these
residuals from the generalized additive models fit was further shown by a nonsignificant Moran’s I statistic (Moran’s I � −0.022, P� .46) obtained
for these data.
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study), spatial resolution and size of local sampling points
(the grain), and local differences in parasite transmission dy-
namics and population processes including vector dispersal
ranges.11,14,17,36–39 The WHO recommendation for using a
sampling grid of 25 x 25 km grid in the multicountry RAGFIL
mapping project was based on preliminary analyses of spatial
patterns of ICT prevalence distribution in Myanmar and mi-
crofilaraemia prevalence distribution in Gulbarga district in
Karnataka state in India,25 which indicated large filariasis
transmission foci (range up to 260 kms in the case of the
Myanmar dataset) in both areas. The proposal for using a grid
span of 25 kms was therefore considered conservative given
these results and indeed thought to represent a practical sam-
pling scheme designed to enhance the likelihood of detecting
local spatial variation occurring at smaller spatial scales in
other areas. However, no analysis was made regarding the
contribution of variations in the extent and grain of the study
areas as well the impact of large-scale trends in the data to the
finding for the existence of large filariasis foci in the above
test areas. As the present results confirm, this gap in analysis
means that the WHO sampling scheme should be applied
cautiously when mapping filariasis distribution in disparate
endemic regions. They also suggest that it may be prudent for
workers to carry out supplementary field work at the outset to
determine the approximate scale of investigation in their ar-
eas, perhaps via the use of multi-stage nested sampling tech-
niques and analyses,40 before attempts to study filariasis spa-
tial variation using the RAGFIL approach are made.

Second, given that uncovering small-scale spatial depen-
dence is dependent on the spatial scale of measurement, using
inappropriate sampling scales have also important implica-
tions for our ability to map filariasis prevalence over larger
areas from spatially stratified samples. For example, the lack
of small-scale spatial dependency for the present antigenemia
data at the sampling scale of 25 kms means that filariasis maps
for this variable cannot be constructed for the present study
area using spatial interpolation methods such as kriging.37

This is because sample values are essentially uncorrelated at
this scale, while kriging methods rely on there being spatial
covariance structure in the data. Indeed, our analysis of the
microfilaraemia data suggests that if these mapping methods
are to be used (or alternatively if the spatial covariance struc-
ture is to be uncovered) for generating filariasis distribution
maps across the present study region, sample points may well
need to be located < 10 kms apart.
Nonetheless, despite these limitations the analyses de-

scribed here have yielded several insights regarding the spa-
tial structure of filariasis in the present South Indian study
area. The first is that although the spatial population dynam-
ics of microfilaraemia prevalence may well be different to
those of antigenemia prevalence, the variogram results for the
former suggest that the foci of filariasis transmission in this
area could, on the other hand, be relatively small (with a
patch diameter smaller than the sampling interval of 25 km).
A small filariasis transmission patch or spatial infection clus-
ter is also in line with theoretical expectations that vector-

FIGURE 6. (a) Locations of 119 sites within a subregion in the Rapid Geographical Assessment of Bancroftian Filariasis area (Figure 1) where
microfilaraemia prevalence data were collected. (b) Perspective plot of a local trend surface (created using the interp function as described in
Figure 5) over the subregion for the log microfilaraemia prevalence values obtained from the study communities in (a).
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borne parasitic diseases are more likely to exhibit high vari-
ability at local spatial scales.16,41 The analysis of the ICT
prevalence data, by contrast, suggests that parasite spatial
population structure in this region is also governed by large-
scale trends for high prevalence, which appeared associated
with altitudinal changes from the south-southeast to the
north-northeast regions of the study area (Figure 5). Taken
together these results therefore imply that both small-scale
spatial processes and large-scale environmental factors may
characterize filariasis spatial distribution in this region.
Our study was not designed to evaluate the factors that may

underlie any observed spatial variation, but preliminary
analysis of the large-scale trends in the present data revealed
that the association of ICT prevalence with altitude may be
partially due to a non-linear relationship between prevalence
and elevation such that the prevalence of infection increased
with elevation up to some 1500 m after which infection preva-
lence declined. Such an effect of elevation on infection preva-
lence has been noticed previously for filariasis in India42 and
Africa43 and has been attributed to effects of altitude on both
vector survival and parasite development and survival.44 The
present results suggest, however, that there may also be an
additional beneficial effect on these variables at intermediate
altitude levels occurring along mountain slopes. Note that
gaining a better understanding of such environmentally re-
lated correlates of infection will also allow the derivation of
ecologic zones of parasite transmission, which could represent
biologically valid strata for developing more realistic strati-
fied random sampling frameworks for estimating infection
burden and distribution.7,8 We are currently examining the
use of remote sensed data on environmental/climactic vari-

ables to investigate the role of this topic in mapping the dis-
tribution of lymphatic filariasis in India.
Gaining a better knowledge of both small- and large-scale

components of parasite population spatial structure is increas-
ingly being recognized as also critical to gaining a better un-
derstanding of the overall spatial population dynamics of in-
fection.12,14,15,40,45,46 This body of work has for example high-
lighted the importance of such spatial entities as population
patch size, shape, and connectivity and regional landscape
gradients governing dispersal (i.e.., spatial entities pertaining
to both small- and large-scale spatial variation respectively),
in influencing the persistence, spread and control of infectious
disease agents within regions.15,41,47–49 These findings indi-
cate that clarifying and quantifying filariasis spatial variation
at the within-regional level are likely to become increasingly
important to the present global efforts for achieving control
of this disease. For example, such studies may not only allow
effective targeting of disease-control efforts within control
areas (that will be required if the duration of treatment, say,
is expected to vary with the level of parasite endemicity), but
also detection of high prevalence sites that may require more
intensive monitoring and management during program imple-
mentation. Characterizing parasite spatial structuring will
also facilitate the development of more realistic spatially ex-
plicit population dynamic models of infection.11,12,47 which in
turn will permit more rational design of effective control pro-
grams.
The present results indicate that geostatistic approaches if

carefully applied can play an important first role in the un-
covering and analysis of this spatial structure for filariasis
epidemiology and control. However, this study also indicates

FIGURE 7. (a) Fitted function (solid line) for latitude in a generalized additive models fitted to the log microfilaraemia prevalence data
(symbols) using the spatial coordinates of each point as predictors. Dashed lines show the pointwise 95% confidence intervals of the estimated
function and indicate a significant nonlinear association between log microfilaraemia prevalence and latitude (F � 6.89, df � 1,2.9, P < .001). (b)
Omnidirectional semivariogram for the detrended log microfilaraemia prevalence data. Symbols are experimental semivariances and the solid line
is the fit of the exponential model described in the text. Parameters of the fitted model are as given in the text. Distance is in degrees.
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that the successful execution of these spatial studies requires
a more thorough consideration of the appropriate geographic
scales at which such investigations should be carried
out.14,17,18 We suggest analyses of spatial scales, in terms of
uncovering both the scales of study and the spatial scales at
which different ecologic processes act, to be a priority re-
search topic at this stage of investigations into the spatial
population structure of lymphatic filariasis.
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