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Abstract – This paper deals with Bayesian geostatistical prediction under the Matern correlation function 
which involves a smoothness parameter in addition to the range parameter. In fact, we consider the reference 
prior for the range parameter and an inverse gamma prior for the smoothness parameter. We then propose an 
attractive and straightforward Monte Carlo method to sample the posterior distribution of the model 
parameters and achieve Bayesian prediction. In a sensitivity analysis, the importance of the prior choice is 
assessed. Since the posterior results greatly depend on the prior hyperparameters, the Monte Carlo EM 
algorithm is applied to determine their maximum likelihood estimates. Finally, we utilize this procedure in the 
geostatistical prediction of carbon monoxide concentrations in Tehran. 

 
Keywords – Geostatistics, Bayesian, prior sensitivity, reference prior  

 

1. INTRODUCTION 
 

Geostatistical models are commonly used for analyzing spatial data and have been extensively used in 
different areas of spatial statistics. In these models, usually the general and flexible Matern family which 
involves a smoothness parameter in addition to the range parameter, is used to model the correlation 
structure [1]. In geostatistical data analysis, the main interest is to predict the random field in some 
unmeasured sites. For this purpose, in recent years, the Bayesian method has been very widely used [2, 3]. 
However, selection of the prior distribution for the parameters of the Matern family requires some extra 
care as they can be difficult to interpret and hence, difficult to elicit. Moreover, the smoothness parameter 
and the range parameter are usually highly correlated, so assuming them to be independent a priori would 
give nonsensical results. Assuming that the smoothness parameter is fixed, Berger et al. [4] introduced a 
reference prior for the range parameter which allows the posterior to be proper. One of the main 
advantages of this prior is that it depends on the smoothness parameter. But due to its complexity, it is 
quite difficult to use the usual the Monte Carlo methods for sampling from the corresponding posterior 
distribution. To the best of our knowledge, no published work using this prior for spatial prediction is 
available. Consequently, in the hierarchical Bayes approach, a vague proper prior is used [5, 6]. But, in 
this case, a sensible choice of the hyperparameters is crucial since they may have an unpleasant influence 
on prediction and inference. Also, to make Bayesian inference feasible, the range parameter is considered 
independent of the smoothness parameter. In the current paper, adopting a full Bayesian approach, we 
consider the reference prior and an inverse gamma prior for the range and smoothness parameters, 
respectively. We then propose an attractive and straightforward Monte Carlo method to sample the 
posterior distribution of the model parameters. Applying this method, we can generate independent 
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samples from the posterior distribution, which is much more efficient for spatial prediction. In a sensitivity 
analysis, the importance of the prior choice is assessed. Since the posterior results depend greatly on 
unknown hyperparameters, we propose to use the Monte Carlo Expectation-Maximization (MCEM) 
algorithm to get the maximum likelihood estimates (MLE) of the hyperparameters. Finally, we 
demonstrate that the procedure satisfactorily offers predictive performance in a real data set.  

 
2. STATISTICAL MODEL 

 

Let D}  t),({)(  tZZ  be a Gaussian random field with linear mean )()]([ tftZE   and covariance 

function ),()](),([ 2 tutZuZCov  . Here, ))(,),(()( 1  tftftf p  is a vector of covariates associated with 

vector t , ),,( 1 p   is a vector of regression parameters, )]([2 tZVar  is the fixed variance of )(Z  

and ),( tu  is the spatial correlation function. For simplicity we assume that ),( tu  only depends on the 

distance |||| tuh  . Moreover, we use a correlation function from the Matern class formulated as 

)/()/()}(2{);( 11  
 hKhh    where 0  and 0  denote the smoothness parameter and the 

range parameter, respectively, ),(    and )(K is the modified Bessel function of order  . 

Moreover, it is assumed that the random vector ))(,),(( 1 ntZtZZ   represents the data measured at the 

sampling locations Dtt n ,,1  . By the stated assumptions, we have ),(~))(,),(( 2
1   XNtZtZZ n , 

where ))(( ij tfX   is the known full column rank pn  matrix, pn  , and ))||;(||(  ji tt   is a 

positive definite nn  matrix. For Bayesian analysis it is necessary to specify prior distribution for the 

model parameters ),,( 2   . Moreover, we assume that, a priori, the vector   to be independent of 

the parameters ),( 2  and 
2

2 1
),(


  , which is the asymptotic case of the conjugate normal-

inverse gamma prior. Really, if in priors ),(~| 0
2

0
2  N  and ),(~2 dcIG , where IG means 

Inverse Gamma, we set 0,01
0   c  then 

2
2 1
),(


  . Also, this joint prior is the Jeffreys' 

prior for ),( 2 . It must be noted that  


2
2

1 


dd
R R p

, so this joint prior is clearly improper. Then, the 

prior densities satisfy 
2

)()|(
)(


  . We consider the reference prior for   developed by Berger et al. 

[4] as  
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where according to Abramowitz and Stegun [7], the derivative formula of modified Bessel function is 

))()(()(' 1 xK
x

xKxK 
 

. As observed, the reference prior (1) depends on the smoothness parameter, 

and Berger el al. [4] showed that it is also proper, i.e. .1 )|( 
R

R d  Further, to avoid having an 

improper posterior distribution, we consider a proper inverse gamma prior for   as ),( baIG , where a and 

b  are unknown hyperparameters.  

Based on the prior distribution, the joint posterior distribution of the model parameters is given by  
 

),,|(),|(),,|(),,|( 22 bazzzbaz   . 
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where 11 )'(ˆ  XXV   and )'(ˆˆ 1zXV   , then  
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We will use common notation for an inverse chi square, i.e. ),( ~ 2 InvX  means 
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Therefore, the joint posterior distribution of ),( 2 , given by ),()ˆ,ˆ(),|,( 2222 SpnInvVNz   , 

is a proper distribution. Also, the marginal posterior distribution ),,|( baz  is in proportion to  
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SVzh



  . However, this expression does not define a standard probability 

distribution. In order to have a feasible computation of the posterior distribution ),,|( baz , we 
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consider a 2 dimensional grid of values belonging to the support set of   with 21 mmm   nodes. Then, 
the approximated posterior distribution of the   is 
 

 


m

j jj

ii
i

bazh

bazh
baz

1
),|()|(

),|()|(
),,|(


  for .,,1 mi   

 
In order to sample from the posterior distribution, we compute the posterior probabilities ),,|( baz  on 
the discrete support set and sample from this distribution. One advantage of the above method is that we 
can generate independent samples from the posterior distribution, which is much more efficient for spatial 
prediction. Furthermore, it is fast and easy to implement.  

We now consider the prediction of )( 0tZ based on the Bayesian predictive distribution, defined by 

.),,|,,(),,,|(),,|( 22
00  dbazzzfbazzf   Since the random field is Gaussian, then 
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Therefore, 
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Then, ).,(~],|)([ 1

2
10  pnTztZ   In order to sample the Bayesian Predictor distribution  

 dbazzzfbazzf ),,|(),|(),,|( 00  , we proceed as follows. Attaching the sampled values of 
  from the posterior distribution to ),|( 0 zzf  and sampling from it, we obtain realizations from the 
Bayesian predictive distribution. Therefore, the mean and variance of these realizations are the Bayesian 
spatial predictor and prediction variance, respectively. 

To carry out Bayesian prediction, the hyperparameters a and b must be specified. Adopting the 
empirical Bayes method, we determine â  and b̂ which maximize the marginal likelihood, given as 

 dbazfzbal  ),|()|()|,( . As there is no explicit solution for the corresponding likelihood 
equation, we use the EM algorithm (Dempster et al. [8]) to approximate â  and b̂ . At the j+1th iteration, 
the E-step involves the calculation of  
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where *E denotes the mathematical expectation under the posterior distribution ),,|( )()( jj baz  with 
the current estimates of the corresponding hyperparameters used at iteration j , i.e. )( ja  and )( jb . The M-
step consists of maximizing ),|,( )()( jj babaQ  in a and b  to yield the new update )1( ja  and )1( jb . The 
process is iterated from a starting value )0(a and )0(b  to convergence. Obtaining a closed form for 

),|,( )()( jj babaQ  is not possible, as it requires knowledge of the conditional distribution of   given z 
evaluated at )( ja  and )( jb . In this case, we approximate the expectation applying the sampled values from 
the posterior distribution ),,|( )()( jj baz . Finally, we replace â and b̂ obtained by this algorithm, the so-
called the Monte Carlo EM algorithm, in the Bayesian predictive distribution. 

 
3. NUMERICAL EXAMPLE 

 
The data set analyzed in this section is comprised of the carbon monoxide (CO) concentration, 
accumulated for a year beginning from 21 March 2003, in n=11 monitoring sites distributed 
geographically across Tehran, Iran. It is of interest to provide an annual prediction surface for the entire 
region. Taking the square root of this annual average concentration made the data distribution nearer to the 
Gaussian distribution. Thus, in the sequel, we model on the square root of CO concentration. The 
exploratory analysis of the transformed data shows that a second order polynomial of spatial covariates 
would be a reasonable structure for spatial trend. In the sequence, following Banerjee [5] we consider the 
interval (0, 2) as the effective range of  . Also, based on profile log-likelihood, we consider the interval 
(0, 10) as the effective range of  . Then, we discretize the effective ranges of the correlation parameters 
by considering a regular grid with 21 mm   nodes. To determine a sensible value for the number of nodes, 
we choose five different locations at the four main directions and one at the center of Tehran. The 
sensitivity analysis showed that for 10001 m  and 202 m , spatial predictions in these locations are 
almost robust.  
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In order to assess how sensitive our posterior inference is to the choice of the prior, we consider some 
values for the hyperparameters. Table 1 displays the various values of the prior hyperparameters, as well 
as the posterior mean and 95% credible interval of  . We observe that the posterior results are sensitive to 
prior changes. Then, there is relatively little direct information in the data on  , so the prior is quite 
important. To elicit reasonable prior distribution, we apply the empirical Bayes method as described in 
section 2. In this way, we obtain 3.6ˆ a  and .8.2ˆ b  

 
Table 1. Prior sensitivity analysis 

 

Hyperparameters Mean 95% Interval 

a=1, b=1 21.17 (16.33,24.69) 
a=1, b=2 10.23 (3.91, 15.06) 
a=2, b=1 11.48 (5.78,16.26) 
a=2, b=2 17.79 (13.22,23.76) 

 
We now compare the predictive performance of the proposed prediction procedure with the Kriging 

method. The mean square prediction residual of the proposed and Kriging methods are determined as 
1.386 and 2.431, respectively. Likewise, we obtained the 95% Bayesian predictive intervals. Of the 11 
95% predictive intervals, which we compared with actual observations, 1 and 4 failed to include the 
observed value corresponding to the two methods. As a result, we have concluded that the proposed 
method has a more superior performance than that of the Kriging method. Finally, we plot the map of the 
Bayesian spatial predictions and the standard deviations of the annual predictions (Fig. 1). According to 
this figure, the predictions of CO concentration are high in the central part of the city, mainly caused by 
heavy traffic. Further, as expected, standard deviations are higher at locations far away from the 
monitoring stations. 

 

  
 

Fig. 1. Predicted CO concentration (up) and Standard deviations predictions (down) 
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