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Javier González a,*, Juan B. Valdés b
a Department of Civil Engineering, University of Castilla-La Mancha, Spain
b Department of Civil Engineering and Engineering Mechanics, and Center for Sustainability of Semi-Arid Hydrology and
Riparian Areas (SAHRA), University of Arizona, USA
Received 12 June 2007; received in revised form 5 September 2007; accepted 14 September 2007
00
do

*

jv
KEYWORDS
Regional frequency
analysis;
Orographic
precipitation;
Smoothing
regionalization;
Precipitation
geostatistic;
Precipitation simulation
22-1694/$ - see front matte
i:10.1016/j.jhydrol.2007.09

Corresponding author. Tel.
E-mail addresses: Javie

aldes@u.arizona.edu (J.B. V
r ª 200
.059

: +34 926
r.Gonzale
aldés).
Summary Using rain-gauge station records for the statistical characterization and simu-
lation modeling of spatio-temporal precipitation field involves many issues and simplistic
assumptions. One major issue is related to dealing with uncertainty at-site sample statis-
tical inference, because of the limited length of records. Regional frequency analysis uses
the idea of substituting space for time in order to reduce uncertainty. It assumes equal
shapes of the precipitation statistical distributions in a region. However, this assumption
limits the area of the analyzed region where this assumption is valid. The extension is
dependent on terrain complexity.

Thisworkpresentsa newapproach for the statistical regionalizationof a largeprecipitation
field, replacing the shape constancy assumption for the hypothesis of smooth spatial varia-
tion. The approach accounts for every uncertainty on site information, using an L-moment
method for inference analysis. Additionally, the orographic effect is introduced in the region-
alization,which substantially improves the interpolation performanceandestimationof areal
precipitation. The approach is used for modeling the monthly precipitation field in the Júcar
River Basin Authority Demarcation (Spain), incorporating its stochastic structure, and spatial
dependency coming froma geostatistical analysis. Issues related to the estimation of regional
precipitation, and mean areal precipitation are discussed in the exposition.
ª 2007 Elsevier B.V. All rights reserved.
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Introduction

Regionalization is the inclusion in frequency analysis of
data from sites other than the site at which statistic
.
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characterization is required. The method assumes that the
frequency distributions of other sites are similar to the site
of interest. Most of the statistical regionalization applica-
tions are concerned with reducing the uncertainty of ex-
treme quantile estimation. The index-flood procedure of
Dalrymple (1960) is an early example. A popular reference
in applying regionalization methods for flood flow frequency
analysis in the United States is the Bulletin 17B of the United
States Water Resources Council (US Water Resources Coun-
cil, 1976, 1977, 1981). The assumption of ‘‘homogeneous
region’’ was suggested as invalid for US streamflow data
(Benson, 1962). Thus there is reason to doubt whether
regionalization is worthwhile. However, research has shown
that even though a region may be moderately heteroge-
neous, regional analysis will still yield much more accurate
quantile estimates than at-site analysis (Lettenmaier and
Potter, 1985; Lettenmaier et al., 1987; Hosking and Wallis,
1988; Potter and Lettenmaier, 1990).

The effect of serial cross-dependence on frequency anal-
ysis has been investigated by Landwehr et al. (1979) and
MacMahon and Srikanthan (1982). They found that serial
cross-dependence causes a small amount of bias and a small
increase in the standard error of quantile estimates. How-
ever, a small amount of serial cross-dependence in data ser-
ies has little effect on the quality of quantile estimates
(Hosking and Wallis, 1997). Therefore, regionalization is
considered a powerful tool for improving the quality of sta-
tistical characterization and quantile estimation. The major
hypothesis is the uniformity in the frequency distribution
parameters. The serial cross-dependence may limit the
ability to reduce uncertainty by increasing spatial
information.

The uniformity and independence required in a regional-
ization process limit the applicability of the method. Unifor-
mity restricts the maximum area covered by the database:
distant sites are less probable to be similar in their fre-
quency distributions. The second assumption, however,
may require distant sites to be serially independent and to
add information to regional statistical analysis. The space
to meet these two restrictions depends much more on the
nature and type of variable to be analyzed (e.g. streamflow
or precipitation depth, and monthly or annual maximum),
and often, on the terrain complexity (e.g. complex orogra-
phy, geology, and soil uses distribution introduces spatial
heterogeneity in the hydrological processes).

When large study areas are to be analyzed, the regional-
ization approaches fail to achieve spatial homogeneity.
Uniform values of dispersion or shape frequency distribution
coefficients are not to be expected, and applying regionali-
zation for the whole area is not valid. Several approaches
may be found in the literature to overcome this issue.
Fiorentino et al. (1987) and Gabriele and Arnell (1991) pro-
posed a procedure that involved a hierarchy of regions.
Relatively large regions are defined over which the shape
parameters are assumed to be constant, and these regions
are subdivided into smaller regions over which the disper-
sion parameter is assumed to be constant. Hierarchical
regions method may produce abrupt changes in the param-
eters when passing from one site to a neighboring site.

Fractional-membership procedures considers a site to
provide information on several regions, rather than belong-
ing to a particular region (Wiltshire, 1986; Acreman and
Sinclair, 1986). Acreman and Wiltshire (1989) noted that
the explicit construction of a region is not necessary in a
fractional-membership procedure. This lead to the concept
of region of influence, proposed by Burn (1990), where the
weights must account for the influence of each site in the
estimation of parameters or quantiles for any particular
‘‘site of interest’’. The largest disadvantage of the method
is in the weight definition, where no universal definition ex-
ists. Another related approach is the mapping procedure,
which is effective when a smooth relation to site character-
istics can be found. Parameters or quantiles arising from re-
gional frequency analysis are mapped or plotted against
typical site characteristics in each region (Schaefer, 1990;
Fill, 1994). A mapping approach can also be used with at-
site estimates (McKerchar and Pearson, 1990). The major
disadvantage when compared with a simpler regionalization
procedure, such as the index-flood procedure, is the diffi-
culty in estimating the accuracy of the final quantile
estimates.

The different procedures proposed to overcome region-
alization limitations seek to avoid the idea of regions de-
fined by borders where abrupt changes occur in favor of a
smooth continuity between regions. The real world pro-
duces a continuous field, where uniformity may be a suffi-
cient approximation in some places. In this work a new
regionalization approach is presented in which the uniform
assumption is replaced by a more realistic assumption when
large areas are analyzed: smooth spatial variation in the fre-
quency distribution parameters. The different L-moments
coefficients which define the frequency distribution func-
tion at each site are approximated by surfaces, which are
fitted from at-site estimations, taking into account the sam-
ple estimation uncertainty and the orography factor. This
provides a regional approximation of a random field distri-
bution. The approach is used to model monthly precipita-
tions in the Júcar River Basin Authority Demarcation
(Spain), producing a spatio-temporal model for spatial pre-
cipitation simulation.

The precipitation database

The Júcar River Basin Authority Demarcation is located in
the east of the Iberian Peninsula, along the Spanish Mediter-
ranean coast. It comprises a vast area of 42,989 km2, and it
is composed of the aggregation of several river basins with
outflow to the Mediterranean Sea: Cenia, Mijares, Palancia,
Turia, Júcar, Serpis, and Vinalopó. The principal mountain-
ous system is the Iberian System, in the northwest of the
demarcation, where the maximum altitude of 2013 m above
the mean sea level is achieved. The terrain provides high
orographic complexity in the Iberian System and lower com-
plexity in the Betic Mountainous System, which comprises
part of the south basin borders (see Fig. 1).

The Iberian System plays an important role in the atmo-
spheric dynamics in the region. It is exposed to the Mediter-
ranean (east) and Atlantic (west) fronts. The mountain
system provides a barrier so that few Atlantic fronts reach
the Mediterranean coast, excepted in the south (Rodrı́-
guez-Puebla et al., 1998). Convection processes from the
Mediterranean Sea and topographical configuration charac-
terize the rainfall distribution over the coast (Millán
et al., 1995).
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Figure 1 Digital elevation model for the Júcar River Basin Authority Demarcation (thick magenta line), and the rain-gauge stations
distribution (black points). The study area has been divided into hydro-homogeneous regions (thin magenta lines). Elevation is
expressed in meters above the mean sea level.
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The precipitation database comprises the historical re-
cords of 1583 stations. It includes monthly precipitation
depths, and extends from 1856 to 2006. During this period
the number of active stations has been changing. Only a
few stations were constructed before 1910, and the pace
increased after that date until 1940, when almost one
hundred stations were active. Then increased interest in
improving the spatial precipitation information produced a
progressive increase in the number of stations until 1990,
when almost 750 stations were active.

No uniformity was found in the spatial distribution of
rain-gauge stations. A higher station density is presented
near to the coast (Fig. 1). Fig. 2 shows the 100 · 100 m2

DEM empirical cumulative probability distribution function
(c.d.f.), which represents a bimodal distribution composed
by the mountainous regions (i.e. higher than 700 m mean
sea level) and the flat regions (i.e. lower than 700 m mean
sea level). The empirical c.d.f. of the stations elevation is
also plotted. Comparing both curves, a higher station spatial
density around the coast is noticed. The flat region, which
occupies 20% of the study area, contains more than 50% of
the rain-gauge stations. However, a very low spatial density
exits along the mountainous regions, where only a few
stations characterize the precipitation regime in higher
elevations. These regions are of great interest for water re-
sources evaluation.

When comparing mean annual precipitation depths
against elevations, two effects are observed (see Fig. 3).
On one hand, orographic effects are shown in the precipita-
tion distribution, noted specially in the mountainous re-
gions, with an increasing precipitation trend for higher
altitudes. Alternatively, annual precipitation depths along
the different regions show high variability, depending on
the rainfall front that reaches each region, and produced
by local effects induced by the topographic configuration
and sea coast proximity. The orographic effect in the flat re-
gions is not so clearly evident in the figure because of the
higher precipitation heterogeneity among flat regions.
There the orographic effect is also presented, however
due to the lower differences in altitude within each flat re-
gion, it has lower importance than other local factors.

Thus, the Júcar Demarcation database is characterized
by irregular spatial and temporal sampling of the rainfall
distribution. High variability in the mean annual precipita-
tion depth is present, with local precipitation ranging from
less than 200 mm to greater than 1000 mm. A regional sta-
tistical analysis of the monthly precipitation distributions
is required to account for the whole data set, in order to ob-
tain a better spatial description. However, because of the
high variability of at-site precipitation, the sample uncer-
tainty must be quantified and accounted for.
The L-moment smoothed statistical
regionalization approach

Statistical regionalization looks to improve at-site statistical
characterization by incorporating spatial data. Several
methods have been described above, including regional
shape estimation and index-flood to hierarchical regions,
fractional-membership, region of influence, mapping, or
Bulletin 17. However, none of these methods provide a uni-
versal approach to produce a smooth continuous spatial
field of the statistical distributions. The application of these
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Figure 2 Empirical cumulative probability distribution function for the 100 · 100 m2 DEM and the rain-gauge stations elevation in
the Júcar River Basin Authority Demarcation.
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Figure 3 Mean Annual Precipitation Depth again the rain-gauge station elevation, taking from a 100 · 100 m2 DEM in the Júcar
River Basin Authority Demarcation.
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methods to the monthly precipitation distribution in the Jú-
car Demarcation is inappropriate because of its complexity.
Below, a new approach is described for the statistical
regionalization based on L-moments. This approach explic-
itly obtains the continuous spatial field of the statistical dis-
tributions of the regional precipitation. The goal is not only
to characterize each site’s statistical distribution, but to
analyze the spatial statistical distribution of monthly pre-
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cipitation over the whole Júcar Demarcation for water re-
sources evaluation.

Fundamental steps in the proposed regionalization pro-
cess are:

• selection of at-site statistical distribution models for
each site in the database;

• site-by-site L-moments estimation and uncertainty quan-
tification; and

• spatial L-moments distribution by smoothing the surface
fitting, eventually accounting for orographic effects.

Selection of at-site statistical distribution model

The objective is to select one or more distribution families
for statistical modeling. The distribution family may be un-
ique for the entire study area, which is optimal because it
simplifies the analysis. When complexity is large, the region
might be divided in different subregions with a family
distribution assigned to each one. However, this may pro-
duce abrupt changes in quantile estimation close to the
subregions borders. For monthly precipitation, a flexible
distribution model which produces good fit is the gamma
distribution (MacKee et al., 1993).

Due to the existence of arid and semi-arid areas in the
study region, some stations have months with probability
of zero rainfall. Therefore, the gamma distribution must
be adapted to account for this fact. The proposed model
is the composite gamma distribution function

FðxÞ ¼
P0 x ¼ 0
1�P0

ba �CðaÞ �
R x

0 ta�1 � e�t
b � dt x > 0

(
ð1Þ

The goodness of fit of the composite gamma distribution was
evaluated for the data set by the Kolmogorov–Smirnov (K–S)
test (Chakravarti et al., 1967). In applying the K–S test at
each site, with a significance level of 5%, the null hypothesis
was rejected in less than 5% of the stations. Additionally, re-
jected sites were dispersed over the study region, and not
concentrated in only a few months. This validates the pro-
posed distribution for monthly precipitations in the region.

Site by site L-moments estimation and uncertainty
quantification

The L-moments are linear combinations of the elements of
an ordered sample. L-moments have theoretical advantages
over conventional moments in that they can characterize a
wider range of distributions, are more robust to the pres-
ence of outliers in the data, and are less subject to bias in
estimation (Hosking and Wallis, 1997). L-moments histori-
cally arose as modifications of the ‘‘probability weighted
moments’’ (PWM) of Greenwood et al. (1979), defined by
the quantities

Mp;r;s ¼ E½Xp � fFðXÞgr � f1� FðXÞgs� ð2Þ

Particularly useful special cases are the probability mo-
ments ar = M1,0,r and br = M1,r,0. Measures of the scale and
shape of a probability distribution are carried in certain
linear combinations of the PWM: these are called the
L-moments:
k1 ¼ a0 ¼ b0

k2 ¼ a0 � 2 � a1 ¼ 2 � b1 � b0

k3 ¼ a0 � 6 � a1 þ 6 � a2 ¼ 6 � b2 � 6 � b1 þ b0

ð3Þ

k1, k2, and k3 correspond with the position, the scale, and
the shape moments, respectively. Landwehr et al. (1979)
provides the expression for estimating the br = M1,r,0 PWM
from a finite sample

br ¼ n�1 �
n� 1

r

� ��1
�
Xn
j¼rþ1

j� 1

r

� �
� xj:n ð4Þ

where xj : n is the jth smaller value in a n-sample
(x1:n 6 x2:n 6 � � � 6 xn:n). It is convenient to define dimen-
sionless versions of L-moments. The L-moment ratio
s = k2/k1 is called the coefficient of L-variation, analogous
to the ordinary coefficient of variation, and usually abbrevi-
ated L-CV.

For the statistical distribution fitting of the monthly pre-
cipitation depths only rain events are considered. There-
fore, this corresponds to the fitting of a gamma statistical
distribution. Using the L-moment estimates, the next rela-
tionships may be defined

k1 ¼ a � b

s ¼ Cðaþ 0:5Þ
a �

ffiffiffi
p
p
� CðaÞ

ð5Þ

Therefore, the sample estimation of ‘1 and t = ‘2/‘1, the â
and b̂ parameters of each gamma distribution may be
computed.

In addition to the above-mentioned advantages of using
L-moments for statistical distribution fitting, the L-mo-
ments approach facilitates consideration of the sample
uncertainty in the regional analysis. The sample estimation
‘1 follows a normal distribution, ‘1 2 N(k1,rl). rl depends
on sample size and on the distribution. The estimated L-
CV is found also to follow a normal distribution, t 2 N(s,rt),
when estimated from a gamma distributed population. The
sample uncertainties rl and rt can be quantified by applying
Monte Carlo simulation techniques. Reiterative simulation
of random n-sample generation from a population following
a gamma probability distribution, in which parameters a and
b are computed by assuming k1 = ‘1 and s = t, and subse-
quent distribution fitting provide an estimation of the
uncertainty coming from a n-sample estimation. The rl

and rt are estimated from the standard deviation of the
simulated-fitted statistics ‘1(i) and t(i), for i the simulation
index i = 1, . . . ,N.

s2l ¼
1

N � 1
�
XN
i¼1
ð‘1ðiÞ � ‘1Þ2

s2t ¼
1

N � 1
�
XN
i¼1
ðtðiÞ � tÞ2

ð6Þ

Therefore, for every site not only the statistics sample esti-
mations are computed, but also the distribution function of
its estimation (Eq. (7)). These distributions are used to fit
the spatial fields of both statistics.

bk1 ! Nð‘1; slÞbs ! Nðt; stÞ
ð7Þ
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Spatial L-moments distribution by smoothing
surface fitting

After estimating the parameters of the distribution of the
sample statistics (Eq. (7)) for the set of Ns rain-gauge sta-
tions (Ns = 1583) for every month, corresponding surfaces
must be fitted to represent the spatial distributions. The
process must account for a smooth spatial variation of
the statistics (i.e. low surface roughness), while simulta-
neously the resulting field must be likely in the set of sta-
tistics distributions coming from the inference process at
each site (i.e. ‘1 2 N(k1,rl), and t 2 N(s,rt)). Thus the fit-
ting approach must adapt to the spatial variability at the
same time that it smooths sample errors. Additionally,
the orographic effect must be able to be included if
significant.

Kriging methods are nowadays a preferable option in the
technical literature for hydro-climatic variable spatial inter-
polation (e.g. Hevesi et al., 1992; Phillips et al., 1992;
Martı́nez-Cob, 1996; Holawe and Dutter, 1999; Goovaerts,
2000; Haberlandt et al., 2001). They allow for predictions
at unsampled locations by capitalizing on the spatial corre-
lation between neighboring observations. However, the kri-
ging method does not show significantly greater predictive
skill when comparing kriging and multiquadratic surface fit-
ting, according to Borga and Vizzaccaro (1997). In fact, be-
sides providing a measure of prediction error (kriging
variance), a major advantage of kriging over simpler meth-
ods is that the sparsely sampled observations of the primary
attribute can be complemented by secondary attributes
that are more densely sampled. For rainfall, secondary
information can take the form of weather-radar observa-
tions (Creutin and Obled, 1982; Azimi-Zonooz et al., 1989;
Raspa et al., 1997), or a cheaper source of secondary infor-
mation like a digital elevation model (Hevesi et al., 1992;
Goovaerts, 2000).

Traditional kringing methods have the disadvantages of
not being able to control fitted surface smoothness, and
of not considering the sampled observations uncertainty,
but exactly fitting the observed values. For these reasons,
the application of kriging methods was rejected for this
work. Instead spline surfaces were selected.

Smoothing spline surface fitness
Using the smoothing spline surface technique allows control
of surface smoothness and accounts for the different
uncertainty in the sampled observations. The fitting process
is expressed as the optimization problem of minimizing
Eq. (8)

p �
X
i;j

wi;j � ½zi;j � ssðxi; yjÞ�
2

þ ð1� pÞ �
Z

d2ss

dx2

 !2

þ d2ss

dy2

 !2
24 35 � dx � dy ð8Þ

where ss(x,y) is the smoothing spline, p is the specified
smoothing parameter, and wi,j are the specified weights
(de Boor, 1978). The weights must account for the differ-
ences in the uncertainty of sampled observations. Because
sample estimations follow normal distributions, weights
are related with the standard deviations sl and st,
respectively.
Here, a cubic smoothing spline was used to fit each sta-
tistic, (k1 and s), which requires a regular grid of observed
points. Since rain-gauge stations do not follow a regular
grid, the spatial information was translated to a designed
regular grid. A quadrangular 10 km by 10 km grid was se-
lected. The value of the statistic in each node in the grid
was estimated by Eq. (9), assigning more importance to
nearest stations by the inverse square distance procedure
and accounting for the uncertainty. Consequently, the
weight for smoothing spline fitness was evaluated by Eq.
(10).The weights are inversely related to the square dis-
tance to the stations, and their standard deviation

vði; jÞ ¼

PNs
k¼1

vðkÞ

d
ðkÞ
ði;jÞ

h i2
�sv ðkÞPNs

k¼1
1

d
ðkÞ
ði;jÞ

h i2
�sv ðkÞ

ð9Þ

wði; jÞ ¼
XNs
k¼1

1

dðkÞði;jÞ

h i2
� svðkÞ

ð10Þ

where v is a variable to be interpolated (i.e. ‘1 or t), evalu-
ated at station (k) or at node (i, j); dðkÞði;jÞ is the distance from
the node (i, j) to station (k); and sv(k) is the standard devi-
ation of the estimation of variable v at station k, with
k = 1, . . . ,Ns, i = 1, . . . , I, and j = 1, . . . ,J.

Correct selection of the smoothing parameter is one of
the most critical steps in the regionalization process. The
sensitivity of the results to p value may produce a surface
which exactly meets each observation and has a high rough-
ness (p = 0), or a flat surface that poorly matched the obser-
vations (p = 1). In order to select p, a maximum likelihood
cross-validation criteria was used. The p that maximizes
the likelihood of the interpolated value in each station
was sought, when its observation was excluded from the
observation set (i.e. delete one method). This is expressed
in the form

V ¼
YNs
k¼1

Uðss½k�v ðkÞ; vðkÞ; svðkÞÞ
" # 1

Ns

ð11Þ

where ss½k�v ðkÞ is the interpolated v value at station k using
the full set of observations, except the value at station k;
and U(x,l,r) is the probability density function of the nor-
mal distribution, evaluated at x, with mean l and standard
deviation r.

This procedure provides an objective criteria for the
selection of p, which is critical for the regionalization. A
coupled source of sensitivity is the mesh resolution for
smoothing spline fitness. Both are responsible for the level
of smoothness achieved, and thus the resolution of the
regionalization. A regionalization procedure looks for
detracting sample randomness and filtering population ran-
domness in the statistical inference process by accounting
for spatial information. Additionally, it may try to estimate
the statistical distribution at ungauged sites. However,
these may be not the only goals for regionalization. For
example, changing the resolution in the regionalization
may be obtained by spatial averaging, thereby avoiding lo-
cal effects that may come from point-measurements.
Rain-gauges close to each other stations may produce dif-
ferent average precipitations which is unexpected from
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the distance and precipitation heterogeneity. A suitable res-
olution in the regionalization may filter these local effects
and provide a better estimation of the area average precip-
itation. The filter effect in the regionalization is controlled,
in this case, by the grid resolution for smoothing spline
fitness.

The objective in this case was to characterize the precip-
itation for water resources management. Therefore, a grid
of 10 km by 10 km was considered suitable, given the objec-
tive and the expected spatial heterogeneity in the region.
Three variables were used to characterize the statistical
distribution of monthly precipitation, ‘1 and t for nonzero
precipitation, and P0 for zero precipitation.

Mean nonzero monthly precipitation fitting
Fig. 3 shows the orographic effect in the mean annual pre-
cipitation. Similar figures were obtained when analyzing
for each month the average precipitation against elevation.
However, the orographic effect in the precipitation is sea-
sonally important, a function of the kind of fronts that pro-
duce rainfall.

To account for the orographic effect in the mean non-
zero monthly precipitation the next model is proposed

‘1ðx; y; zÞ ¼ ‘01ðx; yÞ þ q‘1 � z ð12Þ
where ‘01ðx; yÞ is the estimated mean precipitation in the
point (x,y), considering no orographic effect (i.e. z = 0),
which is taken into account by a linear function of the
elevation z.

Eq. (12) separates the orographic effect from the local
effect. To maximize the likelihood (Eq. (11)), in addition
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Figure 4 Seasonal orographic effect in the mean nonzero month
mean slope (line).
to the smoothing parameter, p, the slope q‘1 in Eq. (12)
plays a role. Thus, both variables must be adjusted simulta-
neously. Fig. 4 presents the resulting values of q‘1 , and its
seasonal behavior. The largest orographic effects are pro-
duced in May and June, when the impacts are not negligible.
The mean annual slope implies an increment in the annual
precipitation depth of 116 mm/km of elevation in a given
area.

Fig. 5 shows the map of mean monthly precipitation in
April after smoothing regionalization for the area of study.
That month shows a high orographic effect in precipitation
distribution, with the impact in the map.

L-CV nonzero monthly precipitation fitness
Traditional regionalization methods often hypotherize that
the L-CV coefficient is constant. However in this work, this
hypothesis is replaced by a continuous smooth variation of
the statistic in the region of interest. After computing the
standard deviation of the estimation of t at each station
and month, using Eq. (6), it was checked that the hypothesis
of uniformity of the L-CV coefficient in each month is unex-
pected. No value exceeds the 99% confidence intervals of
the distribution of ts for the stations.

Therefore, a smoothed spline surface was fitted each
month for the region. In the case of the t statistic, no oro-
graphic effect was found to be significant in any month, so
only the q parameter was necessary to maximize the likeli-
hood given by Eq. (11) for each month. Fig. 6 shows the
resulting distribution of t in April for the Júcar Demarcation.
The smoothness of the statistic is much more important
than in the case of ‘1 (Fig. 5).
Apr May Jun Jul Aug Sep
onth

ly precipitation, evaluated by the slope q‘1 (bars), and annual
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Figure 5 Spatial distribution of the mean (‘1) precipitation depths (mm) in April, in the Júcar Demarcation, by smoothing
regionalization, taking into account the orographic effect.
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Figure 6 Spatial distribution of the coefficient of L-variation (t) of the precipitation depths in April, in the Júcar Demarcation, by
smoothing regionalization.
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Zero monthly precipitation probability fitness
The final statistics to define the monthly precipitation fre-
quency distribution function along the study area is the
probability of zero precipitation P0. The event of producing
zero precipitation during a month, with probability P0, fol-
lows a binomial distribution. P0 provides the frequency of
those events, and is estimated by dividing the number of
zero precipitation events (m) by the total number of obser-
vations (M) at a station. The distribution of the estimation
depends on both values, m and M, but it does not follow a
normal distribution. Instead, its distribution is related to
the Fisher distribution (Johnson et al., 1992). Therefore,
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the approach of smoothing regionalization approach pre-
sented here is not applicable. In this work, the estimation
of P0 computed at each stations was considered directly.
The larger spatial variability of P0 is produced during
summer months (with lower precipitation depths), when
small-extension storms introduce larger spatial variability
with respect to humid months. Thus, the impact of not com-
puting regionalization of P0 is small for the objectives of the
study.

A spatio-temporal simulation model

The spatial L-moments distribution statistically character-
izes the monthly precipitation in the Júcar Demarcation.
This characterization is used here to fit a simulation model,
which allows the generation of synthetic monthly precipita-
tion traces that are consistent with fitted frequency
distributions. In addition, the model produces likely
spatio-temporal distributions. The temporal and spatial
structure of the data is analyzed and modeled next.

Before starting the analysis, and in order to compute cor-
relation coefficients to analyze temporal and spatial rela-
tionships, the data sets for every month and site have
been transformed to a normal distribution. The normaliza-
tion was performed using the statistical distribution in each
month and site. Each normalized value corresponds to the
N(0,1) variable which cumulative probability distribution
function (c.d.f.) coincides with the c.d.f. of the monthly
precipitation. These rainfall c.d.f. distributions are given
in Eq. (1). In order to apply the transformation in the lower
tail of the distribution, the c.d.f of zero precipitation was
considered P0/2 instead of P0. This reduces the truncation
effect in the normalized distribution. With the normalized
data set, the stochastic structure was analyzed first,
followed by the spatial dependency.

The stochastic structure

The stochastic analysis of the normalized data set sought to
define the temporal dependency of the monthly precipita-
tion. First, the Pearson correlation coefficient was com-
puted for every site, and between each two consecutive
months: (Month,Month + 1)! r(Month,St); where St repre-
sent the station index. Also, to analyze the seasonal behav-
ior in r, the confidence interval of the estimation was
computed. The confidence interval of r is obtained by the
Fisher Z-transformation (Fisher, 1915)

Z ¼ 1

2
� ln 1þ r

1� r

� �
ð13Þ

For the transformed Z, the approximate variance r2(z) = 1/
(n � 3) is independent of the correlation, and only depends
on the sample size n. Furthermore, even the distribution of
Z is not strictly normal; it converges rapidly to normal as the
sample size increases for any values of q.

Knowing not only the estimated rs, but also their
distributions, it is possible to check the hypothesis of sta-
tionary q (null hypothesis, H0), against seasonal q (alterna-
tive hypothesis, H1). Therefore, with a test significance
a = 0.05 it was accepted the null hypothesis in a percentage
of month-sites lower than 10%. The temporal distribution of
the month-sites that reject the hypothesis was accepted
uniform, and it does not concentrate in a group of months.
Additionally, the spatial distribution of the stations is dis-
perse. Thus the hypothesis of stationarity in the monthly
autocorrelation coefficient with lag = 1 was considered,
and the stationary r(St)s were computed.

Smooth spatial variation in the qs is also expected, much
like it occurs with L-moment statistics. The hypothesis of
uniform q over the region of study was not accepted, com-
paring the 95% confidence intervals of the computed qs at
every site. Therefore, a smooth spline surface was fitted
for a smooth regionalization of r. The fitting was performed
over the transformed Z, taking into account the correspond-
ing variance at each site, following the above procedure
(Section ‘‘Smoothing spline surface fitness’’). An orographic
effect was observed for q and Z, and the next model will
take this into account

Zðx; y; zÞ ¼ Z0ðx; yÞ þ qZ � z ð14Þ

where Z0(x,y) is the estimated Z-transformed monthly auto-
correlation coefficient in the point (x,y), considering no
orographic effect (i.e. z = 0), which is taken into account
by a linear function of the elevation z. The slope qZ takes
a value of 0.0073 1/km. Fig. 7 shows the spatial distribution
of r after smooth regionalization.

The largest monthly autocorrelation coefficient is pro-
duced in the north, with r � 0.2, along the Iberian Moun-
tainous System. No significant autocorrelation is produced
over the southern mountains, because of their smaller size
and proximity to the coast.

The monthly autocorrelation coefficients regional distri-
bution may be used to model the stochastic structure of
monthly precipitation in the area, considering its temporal
dependence. An autoregressive stochastic model AR(1)
was considered to define the model (Box and Pierce, 1976):

Xtþ1 ¼ / � Xt þ atþ1 ð15Þ

where Xt would correspond to the normalized monthly pre-
cipitation series in each station, / is considered equal to r,
and at is an independent random variable, which follows a
normal distribution, a 2 Nð0; r2

aÞ, with r2
a ¼ ð1� r2Þ � r2

X.
The normal assumption of at is checked for every station,
in addition to its independence. The series at is called the
shock series, because it represents the fluctuation effect
in the model. Thus, the model defined with Eq. (15) repre-
sents the stochastic structure in the monthly precipitations.

Spatial dependency model

In order to produce a simulation model of monthly precipi-
tation in the Júcar Demarcation, in addition to the stochas-
tic structure it is necessary to account for the spatial
dependence of the at-site simulations. This spatial depen-
dence is evaluated with the cross-correlation between two
stations. The variable used for analyzing this spatial depen-
dency is the residual of the stochastic model at each sta-
tion, or shock time series at. Using this variable the
temporal dependence model is disaggregated from the spa-
tial dependence model, thereby simplifying the simulator
model. This assumes that the shocks follow a correlated
spatial structure that are cross-correlated in the at-site
monthly precipitation series.
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The hypothesis of stationary, (no seasonal) cross-correla-
tion between each pair of stations was evaluated using the
5% confidence intervals computed by the Fisher Z-transfor-
mation (Eq. (13)). Assuming stationarity, the spatial depen-
dence was analyzed by geostatistical procedures. The
objective was to model this dependency by fitting an
expression for the correlogram. The distance was found to
be a significant variable in the correlogram definition. As
distance increases, the cross-correlation between shock
series decreases, with exponential and gaussian models
being the best options for representing the behavior (Deu-
tsch and Journel, 1997). Additionally, anisotropy effect
was found in the correlogram, so the orientation between
the two sites is relevant in the cross-correlation coefficient.

The best model considered was a composite model,
which combined an exponential and a gaussian decay of
the correlation coefficient C

Cðh; hÞ ¼ e�
h

AðhÞ � e�
h2

BðhÞ2 ð16Þ

where h is the distance, h 2 [0,p) is the azimut direction,
and A(h) and B(h)2 are the decay coefficients functions of
the exponential model and the gaussian model, respec-
tively. These decay coefficients functions were expressed
in the form of Fourier series

AðhÞ ¼ a0 þ
Xn
i¼1

ai�2�1 � sinð2 � i � hÞ þ ai�2 � cosð2 � i � hÞ½ � ð17Þ

BðhÞ ¼ b0 þ
Xn
i¼1

bi�2�1 � sinð2 � i � hÞ þ bi�2 � cosð2 � i � hÞ½ � ð18Þ

The coefficient ai and bi, i = 1, . . . ,n, were fitted to meet
the maximum likelihood criteria, using the statistical
distribution of the sampled cross-correlation coefficients,
using the Fisher Z-transformation. The number of terms in
the Fourier series, n, was chosen following the F-stopping-
criteria, i.e. sequentially increasing the number of terms
until the decrease in the mean square error is not significant
with respect the decrease in the degrees of freedom.
Resulting coefficients are presented in Table 1.

The obtained correlogram produces a uniform spatial
dependence model over the region, which represents the
cross-correlation between stations. This is used in the sim-
ulation model, which is validated below.

Model validation

The monthly precipitation smooth regionalization of the
frequency distributions and the lag = 1 autocorrelation coef-
ficients, in addition to the spatial dependency model, pro-
vide the components to simulate monthly precipitation
time series in the Júcar Demarcation. The steps for N-years
simulation at a set of stations are:

• Compute 12 · N random set of values at each station,
following a normal standard distribution, in accor-
dance with the cross-correlation matrix produced by
Eq. (16).

• Transform the time series at each station to Nð0; r2
aÞ,

with the r2
a corresponding to the station, by ra

multiplication.
• Incorporate the AR1 stochastic structure (Eq. (15)), and

compute the normalized monthly precipitation time ser-
ies at each station.

• Produce the monthly precipitation time series at each
station by inverting the normalizing transformation,
accounting for the frequency distribution at each sta-
tion, given by the smooth regionalization (Eq. (8)).
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The model produces likelihood at-site simulations. It re-
tains dependency properties for simultaneous simulations in
a set of stations, and can simulate at sites with no previous
observations. In order to validate the model it is appropriate
to check the performance over areal averaging precipita-
tions because the model has been fitted from at-site data.
The regionalization used in the fitting procedure is expected
to produce good spatial representation of the precipitation
realizations. However, samples are only derived from at-
site precipitation. The estimation of areal averaging precip-
itation from at-site data may be computed by the Thiessen
polygon method (Thiessen, 1911), or an inverse square dis-
tance (ID2) procedure. Nevertheless, these areal averaging
methods may produce significant errors because they do
not consider orographic effects, for example. Therefore,
comparing the statistical distributions of areal average pre-
cipitation computed from the at-site data and then provided
by the simulation model (i.e. generating precipitation in a
denser net) is not a valid test.

To adapt the validation test to the available data, the
frequency distribution of areal average monthly precipita-
tion coming from the sample data, and the simulated data
were compared, using the realizations produced at the same
time sequences and sites. This validation test followed the
next steps:

• A representative time period and station set was selected
from the sample. Stations with more than 20 year of data
were selected, which avoid noise in the areal averaging
coming from eventual further data. This produces a set
of 1085 rain-gauge stations. Then a time period with
enough number of simultaneous stations was sought with
the period 1945/46 to 2005/06 selected.

• The selected data subset was used to compute the areal
average monthly precipitation at subregions within the
Júcar Demarcation. The subregions correspond to
subcatchments, where hydrological processes are consid-
ered homogeneous, which conform the hydro-homoge-
neous regions in Fig. 1 (source: Júcar Demarcation).
Over each areal average precipitation time series statis-
tics are computed: the average and standard deviation of
the monthly precipitation, and cross-correlation coeffi-
cient between pairs of hydro-homogeneous regions aver-
age precipitations.

• Monthly precipitation was simulated at the selected
sites, with a duration equal to the selected period (i.e.
61 years). Because not all stations provided a sample
for the full period, and this would impact in the areal
average, only the simulated data corresponding with
times and stations with observations in the selected per-
iod was considered in the areal averaging computation.
The same statistics from the simulations were computed.

• The empirical cumulative probability distribution func-
tion (e.c.d.f.) was computed for every averaging area
and statistic. Then, the e.c.d.f. for the statistics com-
puted from the samples was calculated.

• The model was validated when the quantiles correspond-
ing to the observed data fall into the expected intervals.

The validation test checks the areal behavior of the mod-
el, accounting for the areal averaging estimation error com-
ing from the sample size and spatial structure, and the



Table 2 Validation test results: hydro-homogeneous
regions and months percentages where the sampled data
statistics fall into the 95% probability central interval of the
simulated e.c.d.f.

Areal average
method

Mean
(%)

Standard
deviation (%)

Correlation
coefficient (%)

ID2 98.2 97.6 90
Thiessen 96.4 96.4 90
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averaging method. It evaluates the sample likelihood based
on the fitted model. The test has been performed using the
Thiessen or ID2 averaging methods.

Table 2 compares the sampled data statistics to the
empirical cumulative probability distribution function of
the statistics obtained from simulation. In less than 5% of
cases, mean and standard deviations for each month and
hydro-homogeneous region fall into the 95% probability cen-
tral interval of the probability distribution of the simulated
statistics. For the cross-correlation between pairs of hydro-
homogeneous regions and each month, the level of rejec-
tion is 10%, larger than the test significance. This may imply
that the spatial correlation between regions is not fully rep-
resented. However, the level of rejection is still low. The
correlation coefficient is quite sensitive to outliers or has
a lack of robustness for skew distribution variables. Taking
this into account, the rejection level may be due to high
skewness of some monthly precipitation distributions. Nev-
ertheless, the spatial correlation model, coming from the
geostatistical analysis, assumes stationary correlogram in
the study area. However, this hypothesis, usual in geostatis-
tics, may be only an approximation in this problem. For
large areas, the relationship between precipitation in two
sites may depend not only on the distance and orientation,
but also on the location of both points.

Conclusions

Smooth regionalization is thought to incorporate spatial
information with smooth spatial continuity of the statistics
used in frequency distribution analysis. This idea cannot
be simplified with the hypothesis of uniformity when large
areas are considered for study. Using spatial information
may improve the statistical characterization of a variable,
in comparison with using only at-site information, but
requires an awareness of the uncertainty of every at-site
statistic. The L-moment statistics provide a means of incor-
porating this spatial information while accounting for the
uncertainty in the sample statistic estimations. The smooth-
ing degree in the fitted surface is selected by a cross-valida-
tion maximum likelihood criteria. Therefore, three
statistics, zero precipitation probability, and mean and
standard deviation of nonzero monthly precipitation were
fitted by the smooth regionalization approach. For the non-
zero monthly precipitation, an orographic effect was ob-
served and taken into account by introducing the
elevation as an external drift in the regionalization. This im-
proved the capacity of the regionalization for considering
terrain complexity and its performance in interpolation
problems.
The statistical regionalization was used to design a
monthly precipitation simulation model in the Júcar Demar-
cation. The gamma distribution function was selected for
modeling the probability distribution of nonzero precipita-
tion in the area to normalize the data. Then the stochastic
structure was analyzed and modeled by a stationary autore-
gressive model AR(1), which was again fitted by smooth
regionalization. Orographic effect was also observed in
the fitting and taken into account. Spatial dependence
was modeled over the shocks of the stochastic model. After
geostatistical analysis, a composed exponential and gauss-
ian model was used for the correlogram, for which the
parameters depend on the orientation.

The simulation model was validated, while checking if
spatial averaging of the simulated precipitation results are
likely. The proposed model was validated to represent the
spatial mean and variance. Only the cross-correlations be-
tween areal average precipitation in separated areas pro-
duced lower levels of adequacy, and this may be an area
for future improvements. However, the results are suffi-
cient to consider the simulation model a suitable stochastic
approximation of the complex spatio-temporal precipitation
regime in the Júcar Demarcation.
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