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Summary

Variograms of soil properties are usually obtained by estimating the variogram for distinct lag classes by

the method-of-moments and ®tting an appropriate model to the estimates. An alternative is to ®t a model

by maximum likelihood to data on the assumption that they are a realization of a multivariate Gaussian

process. This paper compares the two using both simulation and real data.

The method-of-moments and maximum likelihood were used to estimate the variograms of data

simulated from stationary Gaussian processes. In one example, where the simulated ®eld was sampled at

different intensities, maximum likelihood estimation was consistently more ef®cient than the method-of-

moments, but this result was not general and the relative performance of the methods depends on the form

of the variogram. Where the nugget variance was relatively small and the correlation range of the data

was large the method-of-moments was at an advantage and likewise in the presence of data from a

contaminating distribution. When ®elds were simulated with positive skew this affected the results of

both the method-of-moments and maximum likelihood.

The two methods were used to estimate variograms from actual metal concentrations in topsoil in the

Swiss Jura, and the variograms were used for kriging. Both estimators were susceptible to sampling

problems which resulted in over- or underestimation of the variance of three of the metals by kriging. For

four other metals the results for kriging using the variogram obtained by maximum likelihood were

consistently closer to the theoretical expectation than the results for kriging with the variogram obtained

by the method-of-moments, although the differences between the results using the two approaches were

not signi®cantly different from each other or from expectation. Soil scientists should use both procedures

in their analysis and compare the results.

Introduction

Geostatistics has been widely applied in soil science since

Burgess & Webster (1980) introduced it. The key idea is that

the value of a variable at a location x can be regarded as a

realization of a random function Z(x) which is intrinsically

stationary. This is a weak form of second-order stationarity

and is met if two conditions hold. The ®rst is that

E�Z�x� ÿ Z�x� h�� � 0 8x; �1�

where h is a separation in space, the lag. The second is that the

variance of the differences,

2
�h� � E�fZ�x� ÿ Z�x� h�g2�; �2�

depends only on h and not on x. The function 
(h) is the

variogram.

The variogram is central in geostatistics. If the variogram of

a soil property in a region can be estimated then it can be used

to estimate that property over a block or at an unvisited site as

a weighted combination of observed values, achieving a

minimum error variance. This is the technique of kriging.

Furthermore, when the variogram is known a grid survey can

be designed for soil properties which will achieve a target error

variance at minimum cost (McBratney et al., 1981). The

variogram can also be used for simulating spatial ®elds with

the same statistical properties as an actual soil variable (Papritz

& Webster, 1995) and to gain insight into the spatial structure

of a set of data (Oliver, 1999).

Conventionally the variogram is obtained from a set of

observed values in two stages, described by Webster & Oliver

(2000). In the ®rst stage the variogram is estimated for separate

lags. The resulting set of estimates is sometimes called the

experimental variogram. If we have Nh pairs of observations

separated by lag h, namely {z(xi), z(xi + h)}, i = 1, 2, ¼, Nh,

then the variogram 
(h) is estimated by
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Ã
�h� � 1

2Nh

XNh

i�1

fz�xi� ÿ z�xi � h�g2: �3�

In practice our data will often come from sampling sites that

are not laid out in a strictly regular way. In these circumstances

there may only be one or a very few pairs of observations that

are exactly separated by a particular lag. It is necessary to

estimate the variogram for lag classes, each centred on a

distance and direction which de®ne the nominal lag, but

actually including a range of distances and directions. Webster

& Oliver (2000) describe this in more detail. It is often

possible and sometimes necessary to ignore the direction

component of lag, and to de®ne the lag class on distance alone.

Choosing the lag classes well is important. If they are too

narrow then the experimental variogram will be noisy, but if

the classes are too broad then the experimental variogram may

be excessively smoothed and information about the spatial

structure of the variable may be lost. The procedure may be

helped by interactive software (Pannatier, 1996), but is always

somewhat ad hoc and so rather unsatisfactory.

The second stage is to ®t a continuous function of lag to the

experimental variogram. This enables semivariances to be

calculated for all the lags in the kriging equations. Only certain

mathematical functions are suitable for this purpose and

choosing and ®tting a model must be done with care. Webster

& Oliver (2000) describe the most commonly used functions

and how they are ®tted.

The procedure outlined above, the method-of-moments

estimation using Equation (3) followed by model-®tting, is

widely used and has been studied in some detail by soil

scientists. Webster & Oliver (1992) addressed the question of

how many data are needed to obtain a reliable estimate of the

variogram. They concluded that some 100±150 data are

needed as a minimum to estimate an isotropic variogram and

that a sample of around 225 data is ideal. Lark (2000)

considered the usefulness of robust alternatives to the

estimator in Equation (3) in soil science. A recent paper by

Pardo-IguÂzquiza & Dowd (1998) suggested that an alternative

method for estimating the variogram, based on the method of

maximum likelihood, might be used in soil science.

Maximum likelihood (ML) estimation of a model of the

spatial covariance of a random variable was proposed by

Mardia & Marshall (1984) in the context of regression analysis

and by Kitanidis (1983, 1987) for speci®cally geostatistical

purposes. To apply the basic ML procedure we have to assume

that the n data, z(xi), i = 1, 2, ¼, n, are a realization of a

stationary, n-variate Gaussian process of variance �2 and

variance-covariance matrix V. We assume that element (i, j) of

V equals C(xi ± xj), where C(h) is the auto-covariance function.

The auto-covariance function is de®ned as

C�h� � E�fZ�x� ÿ �gfZ�x� h� ÿ �g�; �4�

where �= E[Z(x)], assumed to be constant for all x. This latter

assumption, and the assumption that the auto-covariance

function in Equation (4) depends on h only and not on x,

constitutes the condition of second-order stationarity. It is a

more restrictive assumption than the intrinsic hypothesis,

Equations (1) and (2), which is all that we have to assume to

de®ne the variogram and to estimate it by the method-of-

moments (Webster & Oliver, 2000). Under the assumption of

second-order stationarity the variogram de®ned in Equation (2)

may be written as


�h� � �2 ÿ C�h�: �5�
The joint probability density function of the data, assumed to

be multivariate Gaussian, is written as:

p�z;m; p� � �2��ÿn
2jVjÿ1

2expfÿ 1

2
�zÿm�TVÿ1�zÿm�g:

�6�
The vector z contains the n data, and m is a vector of length n,

all the elements of which are equal to the mean of the process.

The vector p contains parameters of the covariance matrix.

The matrix V can be thought of as a product of a scalar, the

variance �2, and the auto-correlation matrix A which is used

for convenience:

V � �2A: �7�
Let us assume that we wish to ®t to the data a variogram

function that consists of a nugget component and a spatially

structured component described by f(h|r), a conditional

negative semi-de®nite function of lag with a single spatial

parameter, r (e.g. an exponential or spherical function):


�h� � c0 � c f �hjr�: �8�
The expression f (h|r) either reaches 1 at some value of h, or

tends to 1 as h ® `. Element (i, j) of A is then given by

A�i; j� � 1 i � j

� sf1ÿ f �xi ÿ xjjr�g i 6� j
; �9�

where s is the spatial dependence, the proportion of the

variance of the random function which has a spatial structure

described by the variogram,

s � c

c0 � c
: �10�

These two parameters, r and s, describe the matrix A. A similar

parameterization could be obtained for more complex spatial

patterns such as nested random functions with components of

different range.

If the probability density function in Equation (6) is

regarded as a function of m and p, with data z regarded as

®xed, then it de®nes a likelihood function. The values of m

and p that maximize the function for a given set of data are

maximum likelihood estimates of the parameters, the set of
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parameters such that the observed data have the largest

probability of occurring. For practical purposes the negative

log-likelihood function is normally used, and a minimum value

is found. For the multi-Gaussian distribution with the

covariance matrix factorized into a scalar variance and a

matrix A de®ned in terms of a variogram function, the negative

log-likelihood function may be written as

L�m; �2; r; sjz� � n

2
ln�2�� � n ln �� 1

2
lnjAj�

1

2�2
�zÿm�TAÿ1�zÿm�: �11�

Maximum likelihood estimates of the vector m and of the

variance �2 can be obtained by setting to zero the partial

derivatives of Equation (11) with respect to these variables.

The resulting estimators are

Ãm � �1T
n Aÿ11n�ÿ1 1T

n Aÿ1 z; �12�

where 1n is a vector of elements all set to 1, and

Ã�2 � �zÿm�TAÿ1�zÿm�
n

: �13�

The estimates, Ãm and Ã�2 may then be substituted for m and �2

in Equation (11) to give a negative log-likelihood function of

the two parameters of A conditional on the estimates:

L�r; sj Ãm; Ã�2; z� �

n

2
ln�2�� � n

2
ÿ n

2
ln�n� � 1

2
lnjAj � n

2
ln
n
�zÿ Ãm�TAÿ1�zÿ Ãm�

o
:

�14�
Maximum likelihood estimates of r and s, and so of the

underlying variogram, may then be obtained by ®nding the

values that minimize this function.

If the assumption of a constant mean, �= E[Z(x)], is

implausible then the ML method may be extended to estimate

simultaneously the parameters of a trend model and a

variogram of the residuals from the trend. This is best done

by restricted maximum likelihood (REML). Pardo-IguÂzquiza

(1997) discusses the procedure and presents Fortran code, but I

do not consider REML further in this paper.

Estimation of the variogram by ML methods is controver-

sial. One of the main objections (see, for example, Cressie,

1993) is the assumption of multivariate normality which is

explicit in the de®nition of the negative log-likelihood function

in Equation (11) (although Kitanidis (1985) reported studies

with non-normal simulated data where ML estimation of the

variogram outperformed other methods). Many soil properties

are not normally distributed on the scales on which they are

most naturally or conveniently measured. Non-Gaussian

behaviour may be identi®ed by exploratory data analysis

using graphs (e.g. histograms) and third- and fourth-order

moments of the data (coef®cients, respectively, of skew and

kurtosis). When non-normality is found data can often be made

approximately Gaussian by transformation to a new scale (e.g.

by taking logarithms or square-roots), and this is widely

followed as best practice in the analysis of soil data (Webster

& Oliver, 1990).

Even if we have transformed a set of n data z1, ¼, zn to

univariate normality, this is only a necessary and not a

suf®cient condition for the assumption that they are a

realization of an n-variate Gaussian process. Pardo-IguÂzquiza

(1998a) noted that the actual multivariate distribution which

underlies a set of data can never be veri®ed since only one

realization is available. He went on to argue that, given this

uncertainty, the multivariate normal distribution is a natural

assumption because it is the distribution of maximum entropy

when all that is known is the mean and covariance matrix

(which fully characterize a multi-Gaussian process).

Furthermore, he pointed out that the negative log-likelihood

function for a data set, given the estimated variance, has two

terms which have a general meaning. These are

lnjAj and n lnf�zÿm�0Aÿ1�zÿm�g: �15�
The ®rst term is a general measure of spatial uncertainty with

its maximum value for a pure nugget process (ln|A| = 0) and

any other value (ln|A| < 0) implying some degree of spatial

correlation. The second term is a weighted least-squares

criterion for the ®t of the model. The set of variogram

parameters that minimizes Equation (11), and hence also

Equation (15), could therefore be regarded as a rational choice

without making any assumptions about the multivariate

distribution. In selecting that set we opt for a model with

strong spatial structure without incurring an excessive penalty

from the squared error term. Pardo-IguÂzquiza (1998a) argued

that the weighting of the two terms (1 and n, respectively) is

optimal by an entropy criterion.

Another problem with maximum likelihood estimation of

the variogram is that the likelihood function may have

undesirable properties, particularly when a spherical model is

speci®ed (Ripley, 1988; Mardia & Watkins, 1989). Warnes &

Ripley (1987) showed that the negative log-likelihood function

may have several local minima and a long shallow pro®le, both

of which make dif®cult the identi®cation of a global minimum

by ef®cient algorithms.

Estimation of the variogram by ML is computationally

intensive. For n data we must invert an n 3 n matrix for each

evaluation of the likelihood function. Many evaluations of the

function will be necessary when searching for a minimum,

even with ef®cient algorithms. Since the introduction of the

method it has been recognized that it is practical for data only

where n < 150 (Mardia & Marshall, 1984; Kitanidis, 1987). An

approximation to the negative log-likelihood function was

proposed by Vecchia (1988) and implemented in an algorithm

by Pardo-IguÂzquiza & Dowd (1997). The method uses
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covariance matrices for subsets of the data to build an

approximate likelihood function. This reduces the number of

computational steps by a factor of 1000. I am not aware of any

evaluation of this method for bias or loss of ef®ciency arising

from the approximation.

Arguments have been advanced in favour of ML estimation

of the variogram. Pardo-IguÂzquiza (1998a) states that it will be

more ef®cient than other procedures and elsewhere (Pardo-

IguÂzquiza, 1998b) that `a few dozen' data may suf®ce

(compare this with Webster & Oliver (1992) who recommend

at least 100 data for the method-of-moments). A particular

advantage of ML estimation is that it does not require ad hoc

de®nition of lag classes, so there will be no smoothing of

spatial structure.

A further argument against the method-of-moments has

recently been stated by Diggle & Ribeiro (1999). Although

Ã
(k) de®ned in Equation (3) is an unbiased estimate of the

variogram, they suggest that, because a set of estimates

derived from the same data for a sequence of lag classes will

be strongly correlated, the sequence of estimates may give a

misleading impression of the form of the variogram. This

effect can be seen in the results presented by Webster & Oliver

(1992). It follows that the goodness of ®t of a variogram model

to the empirical variogram might be a poor criterion for

selecting a set of model parameters, although a new method

has been proposed for ®tting variogram functions (Genton,

1998) which takes account of this correlation.

The discussion above suggests that we should look at ML

estimation of the variogram as a serious alternative. The

possibility that ML estimation is more ef®cient than the

method-of-moments in practice could be of particular interest

if it allows variograms for soil properties to be obtained with

acceptable precision from fewer data than are required by the

method-of-moments.

The present paper compares the method-of-moments

estimation of the variogram with ML estimation empirically.

First, simulated data are used to compare the two methods with

data sets of different size to see if there is reason to expect that

ML estimation can work with signi®cantly fewer data than the

method-of-moments, and to compare the sensitivity of the

methods to departures from assumptions. Second, the estima-

tion methods are applied to subsets of some data on soil

properties, then used for kriging to evaluate the variograms

obtained by the different methods.

Analysis

Simulations

The simulation study has three objectives. First, it compares

the performance of maximum likelihood and the method-of-

moments for estimating the variogram using data sets of

different size. Second, it compares the performance of the

estimators on data with different spatial structures. Third, it

evaluates the effects of skew and contamination on perfor-

mance of the estimators.

The basic simulation procedure was as follows. A random

Gaussian ®eld was simulated on a square grid of 300 3 300

nodes as a realization of a random function with an isotropic

spherical variogram:


�h� � c0 � c
3

2

h

a
ÿ 1

2

h

a

� �3
( )

for 0 < h � a

� c0 � c for h � a

� 0 for h � 0; �16�

where a is the correlation range of the process, from 2 to 6 grid

units in this simulation. The simulation was done using the

SASIM procedure in the GSLIB library (Deutsch & Journel,

1992). The ®eld was then sampled with a set of randomly

located, non-intersecting transects each of 15 adjacent nodes

along a row or column of the ®eld, as in the study of Webster

& Oliver (1992). The variogram was then estimated from the

data in the sample using Equation (3) for lag intervals of 1, 2,

¼, 7 grid units. These point estimates were then output for

model-®tting.

Variograms were then ®tted to the transect data from the

sample by maximum likelihood. In this case we know that the

model of the underlying process is the spherical, but in practice

we do not. Simply to ®t spherical models to these data would

exclude an element of uncertainty which is present when

analysing actual soil data. In practice several models would be

®tted (perhaps after inspecting the experimental variogram)

and the best-®tting one would be selected. Thus both the

choice of model and the ®tted parameters are sources of

uncertainty. To introduce this into the comparison between the

method-of-moments and the ML we would ideally assume

ignorance about the underlying process and try a range of

models. It was impractical here to compare the ®t of all

commonly used bounded variogram functions. For this reason

two options were considered, the spherical (Equation (16)) and

the exponential variogram model:


�h� � c0 � c

�
1ÿ exp

�
ÿ h

a

��
: �17�

The ®tting was done by numerical minimization of the

conditional negative log-likelihood functions as given in

Equation (14). A direct grid search was performed over the

two-dimensional space de®ned by the spatial parameter a and

the spatial dependence s, Equation (10). The matrix A was

speci®ed from each combination of these parameters, the mean

and variance were then estimated using Equations (12) and

(13), then the estimate Ãm and A were substituted into Equation

(14) to obtain L. Having ®tted both variogram functions in this

way the one with the smallest minimized value of the

likelihood function was selected, since the models have the

same number of parameters.
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The procedure above generated a set of point estimates of

the variogram obtained by the method-of-moments and a

model ®tted by maximum likelihood from each set of

transects. Another set of transects was then randomly selected,

and the procedure was repeated. This was iterated until 100

sets of transects had been obtained. The sampling was done

without replacement, so that no node of the grid appears in

more than one of the 100 sets of transects.

Variogram functions were then ®tted to each of the 100 sets

of estimates Ã
(h), h = 1, 2, ¼, 7 grid units. This was done

automatically by weighted least squares. Again both an

exponential and a spherical model were ®tted and the model

with the smallest residual mean square was selected. The

resulting sets of estimated variogram parameters were scanned

for unusual values, but there did not seem to be any problems

attributable to the ®tting step. A set of typical results for four

sets of eight random transects (120 data) are shown in Figure 1.

The maximum likelihood variograms are shown along with the

method-of-moments estimates of the variogram and ®tted

model.

The procedure above generates a set of 100 pairs of

variogram parameters for the sampled ®eld. We need an

appropriate criterion for the closeness of a given model to the

speci®ed variogram used to simulate the ®eld; which is

independent of the model type since not all the ®tted models

will be of the speci®ed type.

The criterion used for this purpose is the �±neighbourhood,

proposed by Diamond & Armstrong (1984) as a measure of the

proximity of two variogram functions. Let g be the set of valid

variogram functions, and let 
 Î g be the variogram of a

particular spatial process. The �±neighbourhood of 
, n�(
) is

a subset of g de®ned by

n��
� �
�

g 2 g:j g


ÿ 1j<�

�
; �18�

where | ´ | denotes the maximum value of the term enclosed for

continuous functions from 0 to `.

Diamond & Armstrong (1984) showed that if sampling or

modelling error results in a variogram g being used for kriging

from data that are a realization of a process with the variogram


 such that

g 2n��
�; �19�

then limits on the error of the kriged estimates of the variable

and its variance which are due to error in the variogram can be

written in terms of �. The �±neighbourhood is therefore a

practically meaningful measure of the proximity of two

variogram functions. The proximity of each estimated

variogram to the variogram speci®ed in the simulation was

measured by ®nding �min, the minimum � such that the �±

neighbourhood of the speci®ed variogram includes the

estimate.

Figure 1 Four examples showing the method-of-moments estimates of the variogram from a sample of 120 data (eight transects) from a

simulated random ®eld, the model ®tted automatically to these estimates and the maximum likelihood model ®tted to the same data. The

speci®ed model is spherical with c0 = 0.3, c = 0.7 and a = 4 grid units.
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The values of �min for variograms obtained by different

estimation methods from the same data will clearly depend on

one another. I found for all but very small samples (one

transect of 15 data) that the difference between �min for the

variograms obtained by method-of-moments and maximum

likelihood from the same sample was not strongly skewed.

Invoking the Central Limit Theorem, the mean of this

difference, over all 100 iterations of the sampling and

estimation procedure, was treated as a Gaussian random

variable. A paired t-test was carried out to test the null

hypothesis that this mean difference is zero.

The basic procedure described above was applied in three

experiments. In the ®rst a Gaussian spherical process was

simulated with mean zero and variogram parameters c0 = 0.3,

c = 0.7 and a = 4 grid units. The basic procedure was then

applied to these data with sample sizes of 15 (one transect), 30

(two transects), 45, 60, 90 and 120 data.

In the second experiment the sample size was ®xed at 60

(after examining the results of the ®rst experiment) and the

spatial structure of the simulated ®eld was varied. In all cases

the mean of the Gaussian random function was zero and the a

priori variance (c0 + c) was 1. All 25 combinations of the

ranges {2, 3, 4, 5, 6} and nugget variances {0.1, 0.3, 0.5, 0.7,

0.9} were used.

In the third set of experiments I investigated the suscept-

ibility of the ML procedure to non-normality of the random

function and to the presence of outliers. Realizations of a

random function with a non-Gaussian distribution were

generated using the procedure of Lark (2000). Ninety thousand

independent realizations of a standard Gaussian variable were

®rst generated. A constant (around 4.0) was added so that the

minimum value of the set was just positive, then each value

was raised to a power �. This exponentiation gives the data a

positive coef®cient of skew. The data were then standardized

to zero mean and unit variance. These new data were then used

as the initial set in Deutsch & Journel's (1992) SASIM routine

which rearranges them in a grid (here 300 3 300) as a

realization of a random function with a speci®ed variogram. In

this instance a spherical variogram was speci®ed with

parameters c0 = 0.3, c = 0.7 and a = 4 grid units. The data were

then used for the basic procedure of sampling and variogram

estimation, using samples of 90 data. This was carried out

four times with �= 1, 2.75, 5.0 and 7.0. The coef®cients of

skew for the exhaustive data were, respectively, 0.0, 1.3,

5.0 and 6.4.

In order to investigate the effects of outliers in the data, one

realization of a Gaussian random function with the same

spatial structure as those used in the ®rst set of experiments

was contaminated by substituting 5% of the data at randomly

selected grid nodes with values drawn at random from a

Gaussian random variable of mean 3.0 and variance 1.0.

Variograms were then estimated and assessed following the

basic procedure with 60 data per sample.

Studies on soil data

This part of the study aimed to compare variograms estimated

from data by the method-of-moments and maximum likelihood

by kriging from them. The data are heavy metal concentrations

in the topsoil of a region of the Swiss Jura, measured by Atteia

et al. (1994) and analysed fairly exhaustively by the authors

(Atteia et al., 1994; Webster et al., 1994; Goovaerts et al.,

1997). Goovaerts (1997) lists the data. Measurements were

made on small cores of soil at 214 sites on a square grid of

interval 250 m. The authors also measured heavy metal

concentrations at clusters of points in a nested sampling

design originating on points of the basic grid, but I have not

used these additional points. Of the 214 data, four were

excluded by Atteia et al. (1994) because the values were

suspect. The remaining 210 data I divided into a group of 106

prediction data and one of 104 validation data. The former set

consisted of 10 intersecting transects of different length such

as might be used in exploratory sampling of a region. Figure 2

shows the layout of the data sets.

At each site data were available on the concentration (in mg

kg±1) of the soil to 25 cm depth of cadmium, cobalt, copper,

nickel, lead and zinc. The data for cadmium, copper, lead and

zinc were strongly positively skewed, so were transformed by

taking logarithms, as discussed in the introduction. Atteia et al.

(1994) did the same transformations of these variables. Each

Figure 2 Location of sample sites in the Jura data. Those with

crosses are the prediction set.
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metal was then considered in turn. Isotropic variograms were

obtained from the prediction data. The method-of-moments

was applied for lag classes centred on 250 m, 500 m, 750 m,

¼, 2000 m. Models were then ®tted to these estimates using

the MVARIOGRAM procedure in Genstat (Harding &

Webster, 1995). This implements a weighted least-squares

algorithm which gives greatest weight to the values of the

experimental variogram for short lags. This is recommended

for obtaining variograms for kriging (Webster & Oliver, 2000)

and was used here because it represents standard practice. In

all cases a spherical or an exponential model gave the best ®t

as judged by the Akaike information criterion (McBratney &

Webster, 1986). Maximum likelihood estimation was also

used, applying a direct search procedure to ®nd a minimum of

the negative log-likelihood function. Spherical and exponential

variograms were ®tted to the data, and that with the smallest

minimum of the negative log-likelihood was selected.

Once a variogram was estimated it was used to predict the

metal concentration at each location in the validation data set by

ordinary punctual kriging from the prediction set. An estimate

of the error variance for each prediction is also generated by the

kriging. The predicted value at location x in the validation data

is denoted ÃZ(x) with variance �2
K;x. This estimate can be

compared with the observed value z(x). The kriged estimate
ÃZ(x) is not usually very sensitive to the variogram used for

kriging, but the estimated variance is sensitive. A useful statistic

for validation of kriging combines both its outputs. This is �(x)

used by Lark (2000) and de®ned as

��x� �
�

z�x� ÿ ÃZ�x�	2

�2
K;x

: �20�

Only the numerator of Equation (20) is a random variable, so if

the kriging error is Gaussian and the variogram is correct then

�(x) should be distributed as �2 with 1 degree of freedom.

Under the same conditions the kriging variance scales the

expectation of �(x) to 1. The value of �(x) was calculated at

each location in the validation data set. The mean value, �(x),

should be 1 if a correct variogram has been used. However,

Lark (2000) showed that the median value, Ä�(x), is a more

useful diagnostic because although it is less powerful than the

mean it is more robust to large or small data values which can

have a strong effect on �(x). The median, Ä�(x), from a sample

of 2n + 1 validation data, is distributed approximately as a

Gaussian variable with an expected value of 0.455 and

variance

�2
Ä�
� 1

8n
�
�2

1�0:455�	2
; �21�

where �2
1(0.455) denotes the value of the �2 probability

density function (1 d.f.) at its median.

The median value Ä�(x) was evaluated for the validation data

for each metal for kriging using the variograms obtained by

maximum likelihood and by the method-of-moments. The two

sets of values of �(x) for any metal based on the two

variograms constitute a set of paired samples, and were

compared using a non-parametric test (Wilcoxon's signed

ranks test, Siegel & Castellan, 1988). This tests the null

hypothesis that the medians of the two sets of values are the

same.

Results

Simulations

Figure 3 shows the mean value of �min for the variograms

based on the method-of-moments and maximum likelihood

over the 100 iterations of the sampling procedure for different

sample sizes. The mean �±neighbourhood is smaller for

variograms based on maximum likelihood estimation at all

sample sizes, i.e. these variograms are closer to the variogram

speci®ed for the simulation, but the difference between the two

variograms is signi®cant (P < 0.05) only for sample sizes 60

and 90 (P = 0.013 in each case). Note that the mean �min for

variograms estimated by maximum likelihood from 60 data is

not much larger than that for the variograms estimated by the

method-of-moments from 120 data.

The mean �min was computed from 100 iterations of a

sampling scheme with 60 sample data for each of 25 simulated

®elds with different underlying variograms. The results are

shown in Figure 4. This ®gure represents a space the

dimensions of which are the range a of a spherical variogram

and the spatial dependence s of the process (Equation (10)).

Each simulated ®eld appears as a node in this space. For more

than half of these ®elds there was no signi®cant difference

between the mean �min of variograms obtained by the method-

of-moments and those obtained by maximum likelihood. The

variograms of ®elds with the weakest spatial structure (short

Figure 3 Mean values of �min for variograms estimated by the

method-of-moments and by maximum likelihood from samples of

different size from a simulated ®eld. The speci®ed model is

spherical with c0 = 0.3, c = 0.7 and a = 4 grid units.
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range and small spatial dependence) were signi®cantly better

estimated by maximum likelihood (P < 0.05), but some ®elds

with longer ranges and larger spatial dependences were also

best estimated this way. The method-of-moments was

generally favoured on simulated data with a short spatial

range and large spatial dependence.

The effects of skew on the mean value of �min for ML or the

method-of-moments are shown in Figure 5. The conformity of

the exhaustive variogram of the simulated data to the speci®ed

variogram was very close in all cases, so differences in �min

can be attributed to effects of sampling and estimation. As

expected the mean of �min for the ML variograms is increased

as the coef®cient of skew increases and the resemblance of the

data to a Gaussian variable is reduced. It is interesting that the

mean of �min for variograms estimated by the method-of-

moments also increases with the data's coef®cient of skew.

Although the method-of-moments does not explicitly require

that we assume the data to be Gaussian, using data more skew

than Gaussian clearly increases its sampling error.

Contamination of the data increased the mean �min for

variograms estimated by both methods. That for the method-

of-moments (60 data) was 1.41 under contamination and for

maximum likelihood 1.55. This latter value is signi®cantly

larger than the former according to a paired t-test (P = 0.019).

Soil data

Figure 6 shows variograms obtained from the prediction data

sets, and the ®tted variogram models are given in Table 1.

Figure 7 shows the negative log-likelihood function for two of

the metals. There is a local minimum in the function for

chromium at a longer range than the global minimum, and also

note the long shallow `valley bottom' in the negative log-

likelihood function for cobalt. Both these features would

hinder minimization by more ef®cient methods than the direct

search.

Table 2 shows the median values, Ä�(x), for the metal

concentrations at the validation sites obtained by kriging using

the two variograms. In the case of lead and zinc Ä�(x) was

signi®cantly smaller than the expected value for a correct

variogram (the method-of-moments variogram for zinc gives a

value of Ä�(x) just within the 95% con®dence interval). This

indicates overestimation of the variance by kriging, possibly

because the variograms have been affected by unusual data. In

the case of nickel Ä�(x) is signi®cantly larger than expected, i.e.

the variance is underestimated. This could be because of the

very patchy nature of the distribution of this metal which

Atteia et al. (1994) noted. For the four remaining metals the

value of Ä�(x) for all the variograms was not signi®cantly

different from expectation, neither was there evidence of a

difference between the values of Ä�(x) for kriging with the two

different variograms. In all cases, however, the value of Ä�(x)

using the variogram obtained by maximum likelihood estima-

tion was closer to the expected value of 0.455 than was the

value of Ä�(x) obtained for kriging with the variogram estimated

by the method-of-moments.

Discussion and conclusions

In the ®rst set of simulation results the maximum likelihood

estimator shows consistently better performance than does the

method-of-moments, and with 60 sample data the performance

of the maximum likelihood estimator is similar to that

achieved by the method-of-moments with 90±120 data ± often

regarded as the minimum sample size required. Since

estimating the variogram requires a fairly large number of

data, and is therefore costly, this step can be an obstacle to the

implementation of geostatistics, and so this relative ef®ciency

Figure 4 Spatial parameters of 25 simulated ®elds (spherical model,

a priori variance of 1) with different ranges (a) and spatial

dependence (Equation (10)). If a node is labelled this shows that

variograms obtained from a sample of 60 data (four transects) by

the indicated method had a signi®cantly smaller mean value of �min

(P < 0.05) according to a paired t-test on 100 iterations of the

sampling scheme.

Figure 5 Mean values of �min for variograms estimated by the

method-of-moments and by maximum likelihood from samples of

90 data from simulated ®elds with different coef®cients of skew and

a common speci®ed model, spherical with c0 = 0.3, c = 0.7 and a = 4

grid units.
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Figure 6 Variograms of soil metal concentrations ®tted to the prediction data sets by the method-of-moments (broken line) or maximum

likelihood (solid line).
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of the maximum likelihood method is of considerable interest.

Unfortunately the second set of simulation results shows that

the relative performance of the two variogram estimators

depends on the nature of the spatial variability. When spatial

structure is weak (i.e. small spatial dependence and a short

range) the maximum likelihood method seems to be

advantageous, but when the spatial dependence is large the

method-of-moments estimation seems to do better. It appears

that the best choice of a variogram estimator depends on the

form of the variogram. This accords with the ®ndings of

Zimmerman & Zimmerman (1991) who did simulation studies

on processes with linear and exponential variograms.

The sensitivity of the ML method to non-normality of the

data was unsurprising. It was interesting that, in the case

studied (Figure 5), the method-of-moments was similarly

susceptible to increased skew in the data. The advantage of

ML over the method-of-moments for data with this speci®ed

variogram was not lost even when the data were substantially

skew. This result is in accordance with that of Kitanidis (1985)

who found that ML could outperform other estimators even on

skew data. It also demonstrates the importance of using

appropriate transforms on data regardless of the method used

to estimate variograms.

The advantage of ML over the method-of-moments for a

random function and sampling intensity where it is favoured is

lost when the data are contaminated with outliers. The greater

susceptibility of the maximum likelihood method to outliers is

a disadvantage in practical geostatistics. Outlying values may

affect geostatistical analysis of soil properties as demonstrated

by Lark (2000) who showed that robust method-of-moments

estimators may outperform Matheron's estimator, Equation

(3), on soil data. If maximum likelihood estimation is to be

used in soil science and other environmental applications then

a more thorough investigation of its behaviour in the presence

of outliers is necessary.

Analysing the data on the heavy metal concentrations was

less conclusive. In no case was there a signi®cant difference

between the distributions of �(x) for kriging with the two

variograms. Both variogram estimators seemed to be suscep-

tible to outliers leading to overestimation of the variance of

kriged estimates (lead and zinc) or apparent underestimation of

this variance (nickel). This reinforces the evidence from the

simulation study that there is no reason to expect the maximum

likelihood estimator of the variogram to be more robust in its

behaviour than Matheron's method-of-moments estimator.

For the four other metals the values of Ä�(x) were not

signi®cantly different from expectation for either variogram

estimator, but it was interesting that the result for maximum

likelihood was consistently closer to the expected value of

0.455 than the result for the method-of-moments which was

both larger than expected (cobalt and chromium) and smaller

(copper and cadmium). Although not overwhelming evidence,

Ä�(x) Ä�(x)

Method-of-moments Maximum likelihood P

Cadmium (log) 0.319 0.402 0.98

Cobalt 0.531 0.478 0.16

Chromium 0.533 0.445 0.15

Copper (log) 0.328 0.407 0.17

Nickel 0.686 0.728 0.38

Lead (log) 0.176 0.180 0.72

Zinc (log) 0.281 0.222 0.91

The 95% con®dence interval about the expected value of Ä�(x) (0.455) for a sample this size

is 0.25±0.66.

Table 2 Values of Ä�(x) for kriging of metals

at validation sites using different

variograms. The value of P tests a null

hypothesis that the distributions of �(x) for

the two variograms do not differ

Method-of-moments Maximum likelihood

Cadmium (log) 0.059 + 0.029 Sph(1.159) 0.017 + 0.067 Sph(0.503)

Cobalt 2.99 + 9.667 Sph(0.871) 4.56 + 6.84 Sph(0.868)

Chromium 70.91 + 29.24 Sph(1.497) 48.2 + 48.2 Sph (0.695)

Copper (log) 0.071 + 0.037 Sph(0.873) 0.079 + 0.020 Sph(0.798)

Nickel 27.1 + 29.2 Sph(1.542) 19.4 + 29.1 Sph(0.83)

Lead (log) 0.021 + 0.013 Exp(0.626) 0.023 + 0.009 Exp(0.73)

Zinc (log) 0.018 + 0.009 Sph(1.346) 0.014 + 0.011 Sph(0.71)

Table 1 Fitted variogram models for soil

data. The models are presented in the

format c0 + c model type(a). Model type is

Sph (spherical) or Exp (exponential)
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this does suggest that there might be advantages in using

maximum likelihood to estimate variograms.

To conclude, simulation showed that in some circumstances

maximum likelihood estimation of the variogram might be

advantageous, but studies on soil data provided no evidence

for practical advantages of maximum likelihood estimation.

Nonetheless, the potential of maximum likelihood methods

should be investigated further by soil scientists. I recommend

that both maximum likelihood and method-of-moments

estimation be used on soil data and the resulting variogram

models compared. Where there are notable differences

between the variograms one might be selected by cross-

validation (estimating the variable at each sampled location,

after excluding its datum, by kriging from the remaining data

points) then comparing the kriged result to the actual data by

computing �(x). Lark (2000) showed that this approach can be

useful for selecting among variograms obtained by several

method-of-moments estimators. Cross-validation does have

drawbacks, and the best procedure would be to use a separate

set of validation data as in this study, but this will not be

practical in routine applications as it is wasteful of data.

Other considerations might favour the use of the variogram

obtained by maximum likelihood estimation. If the data from

which the variograms are estimated are not laid out in a strictly

regular array or set of regular transects, e.g. data from an

unaligned design (Webster & Oliver, 1990), then maximum

likelihood estimation may be preferred because of the

smoothing effect on the variogram of using lag classes within

which the actual lag distances are not tightly distributed about

the mean. If the two estimators suggest that the spatial

structure of the variable is weak (a nugget component

comprising more than half the sill and a short range) then it

is likely that the maximum likelihood estimator is at an

advantage. Of course, this decision can be made only after

sampling and estimation by both methods. There will be

bene®ts from choosing the more precisely estimated variogram

at this stage. Unfortunately we cannot exploit the differences

in precision between the variogram estimators to achieve gains

in the ef®ciency of sampling because until we know the form

of the variogram of a soil property in a particular region we

cannot identify the best estimator to use. The ML estimator

does not allow us to reduce the sampling intensity to less than

the recommendations made by Webster & Oliver (1992) for

the method-of-moments.

A ®nal factor should be considered. Most geostatistical

analyses proceed as if the variogram ± obtained by sampling,

estimation and ®tting of a model ± is known without error. An

advantage of maximum likelihood estimation is that it can be

extended to obtain estimates of the variance of the variogram

parameters (Pardo-IguÂzquiza, 1997), which can then be used as

inputs to further analysis. Dowd & Pardo-IguÂzquiza (1999)

showed how uncertainty about the estimated parameters of the

variogram might be accounted for in simulation using their

estimation variances from the ML output.

Figure 7 Negative log-likelihood functions

for (a) chromium and (b) cobalt.
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