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ABSTRACT

VESPER 1.5 is a shareware software program, written to provide rigourous
gpatial prediction techniques for the precision agriculture industry. It offers a
range of options to deal with data sets of varying data density, spatial distribution,

and observation uncertainty. Such data sets are now gathered from arange of real-

time yield, soil and crop sensors and through manua sampling regimes.

Specificaly, the program provides the flexibility to calculate global and loca

variogram models, undertake global and local kriging in either punctual or block

form and output the parameters and estimates in an ASCII text format. The
program provides control of the semivariogram calculation and choice of models

that may be fit to the input data. A boundary and prediction grid may be generated

in the software or supplied as an external file. VEPSER 1.5 alows user defined

neighbourhood and prediction-block sizes, along with a number of more advanced

controls. It provides a rea-time graphical display of the semivariogram modeling

and a progress (and final) map of the kriged estimates. The value of the loca

variogram/kriging process in dealing with data sets generated for precision
agriculture operations is shown here with a statistical comparison of the standard

prediction techniques over a 100ha field. A comparison using a small portion
(~1ha) of another field is also provided to illustrate both the visual impact of each
technique and introduce the benefits block kriging of estimates brings to many of
these data sets. Having the ability to tailor the prediction process to individual

data sets is essential for Precision Agriculture (PA) where data quantity, density
and measurement quality varies.

Keywords: spatial prediction, local variograms, block kriging, digital maps.

INTRODUCTION

Precision Agriculture (PA) tools, in particular crop yield monitoring, soil
electrical conductivity measurement and intensive soil sampling have provided
gpatially dense data sets for use in crop management. And the desire to extract
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valuable information from these data sets has also brought the process of digital
map construction into wider use. All digital maps are based on some form of map
model and usually require a spatial prediction procedure to produce a continuous
surface map. The particular map model and the spatial prediction procedure
chosen will have an impact on the predictions and the final map.

Map Model Description

Digital maps are constructed using a map model (Figure 1) whereby values are
represented as a set of blocks (B) the centres of which are located on a grid (G).
These models may take a number of general forms. According to Goodchild
(1992) the blocks may have sides equal to the grid spacing (a raster model), the
blocks may be points on a regular grid (a grid model) or they may be points and
the grid irregular, or infinitely fine, with missing values or values equa to zero (a
point model).

Spatial Prediction Techniques

Any form of spatial prediction is based on the premise that observations made in
close proximity to each other are more likely to be similar than observations
separated by larger distances. This is the concept of spatial dependence. The
process of spatial prediction requires that a model of the spatial variability (spatial
dependence) in a data set be constructed or assumed so that estimates at the
unsampled locations (prediction points) may be made on the basis of their
location in space relative to actual observation points. It is the form of these
models, and the assumptions underlying the choice of the same, which generally
distinguish the major spatial prediction methods.

Global methods use all the data to determine a genera modd for spatia
dependence. This model is then applied, in association with the whole data set, in
the prediction process at every prediction point. Local prediction methods use
only points 'neighbouring' the prediction point in the prediction operation. In the
case of local predictors, a singular form of the spatia variance model may be



constructed for the entire data set and applied in each neighbourhood, or an
individual model may be constructed, and used exclusively for, each
neighbourhood. Local methods may therefore be the preferred option, especialy
on large data sets, and where a single variance model may be inappropriate.

Spatial prediction methods whose principle requires the prediction to exactly
reproduce the data values at sites where data is available are said to act as
interpolators. There is a variety of prediction techniques which may be applied to
mapping continuous surfaces. The most widely known include: globa means and
medians, local moving means, inverse distance squared interpolation; Akimas
interpolation; natural neighbour interpolation; quadratic trend; Laplacian
smoothing splines; and various forms of kriging.

The prediction technique of choice for map production in precision agriculture
will depend on the expected use of the map. However, red-time sensors that
intensively sample variables such as crop yield, produce large data sets containing
a wealth of information on small-scale spatial variability. By definition, precision
agricultural techniques should aim to identify the quality of the data and preserve
the appropriate degree of detail.

VESPER

VESPER 1.5 (Variogram Estimation and Spatial Prediction plus Error) is a PC-
Windows software program developed by the ACPA that allows the geostatistical
gpatial prediction procedures of punctual and block kriging to be applied to data
sets gathered for PA management. The program also offers the further options of
global or local kriging, using global or local semivariograms.

Input and ouput files are controlled through the ‘File' panel (Figure 2a). Input
data with associated Cartesian coordinate locations is required to enable spatial
analysis. The output files record the specific session setup details, variogram
model parameters and the prediction locations, values and associated prediction
variance.

The ‘Variogram’ panel provides the choice of global or local semivariogram
estimation and provides access to a choice of models (Figure 2b) which may be fit
to the semivariogram using 3 possible weighting procedures (Figure 2c).
Nonlinear least-squares estimation is used in the modé fitting process. The model
may be chosen from a comprehensive range of options. Provision is made for
comparison of the ‘goodness of fit' of the numerous models through the Akaike
Information Criteria (Akaike, 1973) and sum of squared error (SSE). If a global
semivariogram is required, the ‘Fit Variogram' button provides access to an
interactive calculation and modeling panel (Figure 2d) from which the final model
parameters are extracted for use in the subsequent kriging procedures. The global
modelling panel now also provides for subjective model fitting through interactive
parameter control bars. This is useful in small data sets and applications where
emphasis needs to be placed on particular regions of the sampling separation
distance.
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Figure2. Operational panels — file input/output control panel (a), variogram
panel showing available models (b), variogram panel showing
weighting options for model fitting (c), global variogram operation
window (d).

The ‘Kriging’ panel (Figure 3a) provides kriging type (ordinary or simple) and
method (punctua or block) options. Here it is aso possible to define the block
size (if relevant), set neighbourhood limits based on radial distance or number of
data points and manipulate the kriging region. For most PA applications, the field
boundary will provide the limits of the kriging region. VESPER 1.5 provides the
option of importing an existing boundary file or describing the field boundary
using an interactive drawing tool (Figure 3b). The prediction grid (at user-defined
distances) may then be produced with the software (Figure 3c) or a previous grid
file imported. These features are important for the continuity of prediction sites
through time within afield.
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Figure3. Kriging pand (a) interactive boundary construction window (b) and
prediction grid setup window (c).

In operation, VESPER 1.5 provides a window displaying the operational
progress (Figure 4). For al forms of kriging a prediction progess map is produced
along with a count of visited versus total prediction sites. The graphical progress
facilities can be disengaged to increase the speed of the prediction process.

Local semivariograms are calculated for each neighbourhood during the local
kriging process, but the maximum distance and number of lags required for
estimating the local semivariograms is set through the ‘Variogram’ panel. Kriging
with local variograms involves searching for the data points within the defined
neighbourhood surrounding each prediction site, estimating the variogram cloud
for the data points and fitting a model, then predicting a value (and its
uncertainty) for the attribute under question at each prediction site. Note in Figure
4 (@) and (b) that this loca method allows changes in local variability to be
reflected in the variogram parameters for each prediction.

The output for al kriging operationsis a five column ASCII text file containing
the prediction point ID, location coordinates, the predicted value and the kriging
variance. Access is provided at the end of the kriging process to manage the data
delimeter and include/exclude the point ID and header descriptions in the fina
output file. This alows input formats to be taillored to GIS and map display
programs. An input file detailing the exact settings for each prediction session is
also saved aong with a report file logging global variogram parameters or the
parameters of each local variogram depending on the operation. Other details of
the data and the kriging session are also recorded in this file for future reference.
A surface map of the estimates and the prediction variance (Figure 5) can aso be
accessed at the completion of the kriging procedure.
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IMPACT OF PREDICTION TECHNIQUESON DIGITAL MAPS
Comparison by Distribution and Performance Rankings

Individual wheat yield values, collected at a frequency of 1 Hz from a 100 ha
field in NSW, Australia, were randomly alocated into one of two equal-size
datasets. One data set was used as input values for the prediction processes the
other provided the prediction locations and test values for a comparison of point
(punctual) prediction techniques. Local mean, inverse-distance squared, local
kriging with a global variogram are compared along with the less common
technique of local kriging with a local variogram (Haas, 1990). A search
neighbourhood of 100 data points was used as standard.

Table 1 shows the resulting frequency distributions and performance rankings
of the prediction techniques in comparison to the observed values at the locations.
The rankings (1:4 — where the closest prediction value to the observation value
gets a ranking = 1) are calculated at each point and then summed for each
technique. The fina performance rank is alocated from the lowest to the highest
sum of ranks.

Here the estimates from the kriging procedures most closely match the origina
observation values and thereby maintan more of the original frequency
distribution. Local kriging with a local semivariogram has performed the best.
Inverse distance-squared, while performing third overall, has registered the
smallest frequency of number one ranks.

Comparison by Spatial Representation

To visually demonstrate the results of the different prediction methods on crop
yield data, a small portion (~1ha) of another field and crop has been chosen.
Sorghum yield data, acquired using a real-time yield monitor in 7 metre wide
harvest runs, was predicted onto aregular 1 metre grid using the point prediction

Table 1. Wheat yield frequency distribution and performance rankings for spatial
prediction techniques on a 100ha field in NSW, Austraia. (26337 observations)

Technique Max. Min. Mean Sumof Median No. of Final
(ha) (t/ha) (t/ha) ranks rank ranks=1 Rank

Test data 626 092 371

Local kriging w/

local variogram 599 101 371 59152 2 9150 1

Local kriging w/

globa variogram 588 111 371 60688 2 7421 2

Inverse

distance-squared 571 101 372 63382 3 4480 3

Loca mean 501 187 372 80168 4 5284 4




methods of local inverse distance-squared, local kriging with a global
semivariogram and local punctual kriging with alocal semivariogram. In addition,
local block kriging with alocal semivariogram has been undertaken.

Block kriging has rarely been used since Burgess & Webster (1980) introduced
geostatistical spatial prediction techniques into soil science, and software for
performing it is rather scarce. Block kriging attempts to predict the weighted
average of avariable over some block of length (dx) and width (dy) centred about
some prediction point (x0, y0). It should be noted that the locations (X0, yO - the
prediction grid or raster) can be closer together than the block length or width.
This in fact gives an aesthetically pleasing, smooth map. The mgor advantage of
using block kriging is that the estimate of the block mean, not surprisingly,
improves as the block dimensions increase.

In Figure 6a shows the map produced by the simple process of local moving
mean. The map is smoothed by the moving window operation and the fact that al
data points receive equal weight in the prediction process. Figure 6b, the inverse
distance method, places alot of varibility in the map by virtue of honouring the
very high and low peaks in the harvest data. It is easy to distinguish the harvest
operation lines that run NW/SE in the surface map. Because the inverse distance
squared moddl is fixed, and its radius of influence is small, the map takes on the
characteristic "spottiness’ of maps made using this technique.

Local kriging with a global semivariogram (Figure 6¢) has smoothed out the
map to a degree and the harvest operation lines are not evident because the
variogram has captured a longer spatial dependence in the data set than the fixed
inverse distance model. Data points from further out in the neighbourhood have
been given some influence on the prediction at each point.

Loca Kriging with local variograms (Figure 7a) restore some of the loca
variability because the changes in spatial dependence between the local
neighbourhoods is included. Changing the map model from point estimates to
estimates representing the weighted average yield in a 20 metre block around each
prediction point (Figure 7b) removes some of this variability from the estimates.

That the form of spatial prediction chosen for map construction may be
significantly influential on the final prediction surface is not a new concept. A
number of studies (e.g. Ladlett et al. (1987), Wollenhaupt et a. (1994), Weber &
Englund (1994), Whelan et al. (1996), Gotway et a. (1996)) show that in genera
inverse distance techniques are sensitive to the degree of inherent variability in a
data set, the neighbourhood population used in each prediction and the power of
distance used in the weighting calculation. Alternatively, the accuracy of ordinary
kriging generally displays little sensitivity to the variability in the data sets and
the accuracy of the estimates improves with increasing neighbourhood
populations.
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The observed inefficiencies of the inverse distance squared prediction technique
can be attributed to two main problems. Firstly, the spatial variability in a data set
is not used to determine the spatial dependence model for use in the prediction
process. Secondly, the method is an exact interpolator that passes through the data
points, and this may not be sensible if there is uncertainty in the observations.
Kriging only operates as an interpolator if the semivariogram nugget value (CO)
equals zero. With any positive CO value, close range uncertainty in the



observations will be reflected in the kriged surface. Such uncertainty may arise in
either the value of the observed attribute or its spatial location.

This point is often overlooked in assessing the suitability of prediction
techniques but should be a given a high priority in PA owing to the potentia (and
real) errors associated with real-time sensors and GPS receivers (Lark et al.
(1997); Whelan and McBratney (2002); Ardan and Colvin (2002)). In such cases,
block kriging estimates for an area should prove extremely useful in reducing the
carryover of errors into the final maps. Block kriging also offers a robust method
of estimating values for an area that represents the smallest differentially
manageable land unit in a farming operation (usually governed by implement
width and operational dynamics).

Block kriging may be undertaken using a global semivariogram but once the
number of data points rises above 500 it seems wasteful to assume a single
semivariogram within the field. A global semivariogram may prove too restrictive
in its representation of local spatia structure whereas local semivariogram
estimation and kriging offers the ability to preserve the true local spatia
variability in the predictions. If the chosen neighbourhood is reasonably small, the
use of local semivariograms should also negate the possible requirement for trend
analysis and removal prior to semivariogram estimation and kriging.

A further advantage in the use of kriging techniques lies in the provision of a
prediction variance estimate (Ladett et a., 1987; Brus et a., 1996) which may be
used to produce confidence limits on the predicted values. The reporting of such
limits should be mandatory for digital maps as they will have important
ramifications on the extrapolation of management information (Whelan and
McBratney (1999); Cuppit and Whelan (2001). The uncertainty may also be used
to determine the most suitable mapping class delineations in digital maps. For
example, if the 95% confidence interval in crop yield estimates is +/- 1.0 t/ha,
classifying a field using classes less than 1.0 t/ha would be mideading. A
classification system based on the uncertainty in the yield data may prove useful
in the future.

On the other hand, criticisms that have been levelled a the kriging techniques
complexity and related computational expense (e.g. Murphy et a., 1995).
Astoundingly, this one line of criticism has apparently overridden al the
advantages discussed above, and led to the general acceptance of the inverse
distance method as the prediction method of choice in the emerging mapping
packages for Precision Agriculture. While there may be some instances where a
prediction map is required quickly (e.g. soil attribute maps for interpolation to
fertiliser application maps), at present the author believes this is not a rational
reason for discarding the advantages incumbent with kriging techniques.
Certainly for crop yield maps, the computational time would be far outweighed by
the single fact that the map represents a great deal of time, effort and expense
taken to grow a crop. Ultimately, it is the integration of an entire seasons crop
growth information.



Where the computational expense may become important (and indeed the
choice of prediction technique possibly unimportant) is when the observation
sampling scheme is inadequate in terms of sample size, sample strategy, or both.
Sample size is probably considered the most crucial parameter (Englund et al.
1992) with an increasing number of observations generaly offering greater
prediction accuracy. Numerous studies on the effect of sample strategy for
regionalised variables have been reported since the early theoretical work of
McBratney et a. (1981). The genera axiom to emerge is that sampling schemes
which fail to produce a sample set representative of the actual spatial variability in
the attribute of interest will hinder accurate prediction by any method. Data sets
from calibrated real-time sensors should not fall into this category, but traditional
soil sampling operations may produce such data.

CONCLUDING REMARKS

Spatial prediction methods used in PA should accurately represent the spatial
variability of sampled field attributes and maintain the principle of minimum
information loss. However, data used in any spatial prediction procedure should
be of known precision and that precision used to guide the choice of spatial
predictor. Due to imprecision in crop yield measurement and within-field
location, interpolators (exact spatial predictors) are generally not optimal.

The results presented show that the form of spatia prediction chosen for
mapping yield has a significant influence on the final prediction surface. Local
kriging using alocal variogram appears well suited as a spatia prediction method
for dense data-sets. In particular, local block kriging reduces the estimate
uncertainty when compared with punctual kriging and may be an optimal
mapping technique for the current generation real-time yield and soil sensors.

Ultimately, any software devised for spatial prediction in precision agriculture
applications should include options that will optimally support the management
decisions that will be formulated upon the prediction resullts.

VESPER is avalable a chareware from the ACPA at
www.usyd.edu.au/su/agric/acpa
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