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Outline

An overview of

Diggle, P.J. & Ribeiro Jr,

P.J. Model Based Geostatis-

tics, Springer, 2007

• Basics of geoestatistical

models

• Inference and prediction

• Some topics and extensions

• Case studies



PART 1

Introduction, examples and modelling



Context for spatial data

• (geo)-referenced data

• GIS - Geographical Information Systems

• Spatial Analysis

• Spatial Statistics

– discrete spatial variation

– continuous spatial variation

∗ point process

∗ geostatistical or point referenced data

– mixed and . . . more complex structures

• methods now expanded to a wider context



Geostatistics

• traditionally, a self-contained methodology for spatial
prediction, developed at École des Mines, Fontainebleau,
France

• nowadays, that part of spatial statistics which is
concerned with data obtained by spatially discrete
sampling of a spatially continuous process

Model-based Geostatistics

• the application of general principles of statistical
modelling and inference to geostatistical problems

• Example: kriging as minimum mean square error
prediction under Gaussian modelling assumptions

• framework for tackling problems by
exploring and extending the basic model



Example 1.1: Measured surface elevations
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require(geoR) ; data(elevation) ; ?elevation

Potential distinction between S(x) and Y (x)



Summary(I): Terminology and Notation

• (Yi, xi) : i = 1, . . . , n basic format for geostatistical data

• {xi : i = 1, . . . , n} is the sampling design

• in principle xi is fixed or stochastically independent of Yi

• {Y (x) : x ∈ A} is the measurement process

• {S(x) : x ∈ A} is the signal process, assumed underlying
stochastic process

• T = F(S) is the target for prediction

• [S, Y ] = [S][Y |S]: specification of the geostatistical model



Summary(II):A canonical geostatistical data
analysis

Basic steps:

• exploratory data analysis

• model choice

• inference on the model pa-
rameters

• spatial prediction

Assumptions:

• stationarity (translation)
global mean, variance and
spatial correlation

• isotropy (rotation)

• Gaussianity



Summary(III):Core Geostatistical Problems

Design

• how many locations?

• how many measurements?

• spatial layout of the loca-
tions?

• what to measure at each loca-
tion?

Modelling

• probability model for the sig-
nal, [S]

• conditional probability model
for the measurements, [Y |S]

Estimation

• assign values to unknown
model parameters

• make inferences about (func-
tions of) model parameters

Prediction

• evaluate [T |Y ], the condi-
tional distribution of the tar-
get given the data



Motivating examples

In the following examples we should identify:

• the structure of the available data

• the nature of the response variable(s)

• potential covariates

• the underlying (latent) process(es)

• the scientific objectives

• combine elements/features for a possible statistical model





Example 1.2.1: Paraná rainfall data

200 300 400 500 600 700 800

0
10

0
20

0
30

0
40

0
50

0
60

0

Y
 C

oo
rd

require(geoR) ; data(parana) ; ?parana ; points(parana)



Example 1.2.3: Favorable/risk zones





Example 1.3: Residual contamination from
nuclear weapons testing
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Example 1.4: Childhood malaria in Gambia
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Example 1.4: continued
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Example 1.5: Soil data
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Example 1.5: Continued
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Example 1.5: Continued
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Covariate relationships for Ca concentrations.



Example 1.5: Forestry inventory





Example 1.6: Fish stocks (Hake)



Support

• xi is in principle a point, but sometimes measurements
are taken on (maybe small) portions

• revisiting the examples (e.g. elevation and rongelap) we
can see contrasting situations

• S(x) =
∫

w(r)S∗(x− r)dr

• smoothness of w(s) constrains allowable forms for the
correlation function

• support vs data from discrete spatial variation

• (in)compatible supports for different sources of data





Multivariate responses and covariates

• Y (xi) can be a vector of observable variable

• measurements not necessarily taken at coincident loca-
tions

• data structure (xi, yi, di) can include covariates (potential
explanatory variables)

• jargon: external trend and trend surface (coordinates or
functions of them as covariates)

• distinction between multivariate responses and covariates
is not aways sharp and pragmatically, it may depend on
the objectives and/or availability of data

• revisiting examples



Design

What and where to address questions of scientific interest

• elevation data: map the true surface

• Rongelap data: short range variation and “max”

• Paraná and Gambia data: locations given

How many: sample size

• statistical criteria

• pratical contraints: time, costs, operational, . . .

Where: design locations

• completely random vs completely regular

• different motivations (e.g. estimation/prediction), need
to compromise

• oportunistic designs: concerns about preferential sam-
pling and impact on inferences



A basic reference model

Gaussian/linear geostatistics

The model:

• [Y, S] = [S][Y |S]

• Stationary Gaussian process S(x) : x ∈ IR2

· E [S(x)] = µ

· Cov {S(x), S(x′)} = σ2ρ(‖x− x′‖)

• Yi|S(·) ind∼ N(S(xi), τ
2) (conditional independence)

Is equivalent to:
Y (x) = S(x) + ǫ



Gaussian (linear) model
1-D Schematic representation:
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• benchmark for hierarquical models
• GRF or GAM ?



Some extensions

• non-constant mean model (covariates or trend surface)

* E [S(x)] = 0

* Yi|S(·) ind∼ N(µ(xi) + S(xi), τ
2)

* Y (x) =
∑p
k=1 βkdk(xi) + S(x) + ǫ

• transformation of the response variable (Box-Cox)

Y ∗ =

{

(Y λ − 1)/λ : λ 6= 0
log Y : λ = 0

• more general covariance functions

• non-stationary covariance structure



Comments

• word of caution:
decision on one will probably affect the other

• spatially varying mean vs correlation in the response vari-
able around the mean

• whenever possible, keep it simple!

• likelihood based measures can guide model choice



Generalised linear models

• GLM’s and marginal and mixed models

• GLGM: Generalized linear geostatistical models

• Model elements:

1. a Gaussian process S(x), the signal

2. data generating mechanism given the signal

3. Yi|S(·) ind∼ EF(µi, τ
2) (conditional independence)

4. relation to explanatory variables

h(µi) =

p
∑

k=1

βkdk(xi) + S(xi)

• Nugget: clear distinction between micro-scale variation
and measurement error
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Characterising S(x): correlation function

• a function Cov (·) : IR → IR is a valid covariance function
iff Cov (·) is positive definite

• core of the spatially continuous models
· Cov {S(x), S(x′)} = σ2ρ(‖x− x′‖) = σ2ρ(‖u‖)

• ρ(u) is positive definite if

·
∑n
i=1

∑n
j=1 aiaj Cov (xi−xj) ≥ 0 for all ai ∈ IR, xi ∈ IRd

· then, any
∑m
i=1 aiS(xi) has a non-negative variance

• typically assuming a parametric form for ρ(·)

• Example: exponential model ρ(u) = exp{−u/φ}

• stationarity assumption



Properties

1. Cov [Z(x), Z(x + 0)] = Var [Z(x)] = Cov (0) ≥ 0

2. Cov (u) = Cov (-u)

3. Cov (0) ≥ | Cov (u) |

4. Cov (u) = Cov [Z(s), Z(x+u)] = Cov [Z(0), Z(u)]

5. If Cov j(u) , j = 1, 2, . . . , k, are valid cov. fc. then
∑k
j=1 bj Cov j(u) is valid for bj ≥ 0∀j

6. If Cov j(u) , j = 1, 2, . . . , k, are valid cov. fc. then
∏k
j=1 Cov j(u) is valid

7. If Cov (u) is valid in Rd, then is also valid in Rp , p < d



Continuity and Smoothness . . .

• A process S(x) is mean-square continuous if, for all x,

E [{S(x+ u) − S(x)}2] → 0 as u → 0

• A formal description of the smoothness of a spatial sur-
face S(x)
is its degree of differentiability.

• S(x) is mean square differentiable if
there exists a process S′(x) such that, for all x,

E

[

{

S(x+ u) − S(x)

u
− S′(x)

}2
]

→ 0 as u → 0



. . . and the correlation function

• the mean-square differentiability of S(x) is directly linked
to the differentiability of its covariance function

• Let S(x) be a stationary Gaussian process with correla-
tion function ρ(u) : u ∈ IR. Then:

– S(x) is mean-square continuous iff ρ(u) is continu-
ous at u = 0;

– S(x) is k times mean-square differentiable iff ρ(u) is
(at least) 2k times differentiable at u = 0.



Spectral representation

Bochener Theorem (iff):

Cov(u) =

∫ +∞

−∞

exp{iu}s(w)dw

• s(w) is the spectral density function

• Cov (u) and s(w) form a Fourier pair (the latter can be
expressed as a function of the former)

• provided an alternative way to estimate covariance struc-
ture from the data using periodogram – ŝ(w)

• in principle provides way for testing for valid covariance
functions and/or to derive new ones



The (Whittle-)Matérn family

ρ(u) = {2κ−1Γ(κ)}−1(u/φ)κKκ(u/φ)

• Kκ(·) denotes modified Bessel function of order κ

• parameters: κ > 0 (smoothness of S(x)) and
φ > 0 (extent of the spatial correlation)

– for κ = 0.5, ρ(u) = exp{−u/φ}: exponential model
– for κ = 1, ρ(u) = (u/φ)K1(u/φ): Whitle, 1954
– for κ → ∞ ρ(u) = exp{−(u/φ)2}: Gaussian model

• ⌈κ− 1 times differentiable.

• κ and φ are not orthogonal

– φ not comparable for different κ
– reparametrisation: α = 2φ

√
κ

• A review: Guttorp and Gneiting (2005)
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The (Whittle-)Matérn family (2D)
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Other families (I): powered exponential

ρ(u) = exp{−(u/φ)κ}

• scale parameter φ and shape parameter κ

• non-orthogonal parameters

• 0 < κ ≤ 2

• non-differentiable for κ < 2 e infinitely dif. for κ = 2

• asymptotically behaviour (pratical range)
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Other families (II): spherical and wave

ρ(u) = [1 − 1.5(u/φ) + 0.5(u/φ)3] I[0,φ](u)

• finite range φ (overlapping volume between two spheres)

• non-differentiable at origin

• only once differentiable at u = φ

• potential difficulties for MLE

ρ(u) = (u/φ)−1sin(u/φ)

• non-monotone (realisations reflect oscilatory behaviour)
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Spatial case: the nugget effect

• discontinuity at the origin

• interpretations

– measurement error (Var [Y |S])

– micro-scale variation (Var [S] )

– combination of both

• usually indistinguishable (linear model)

• except repeated measurements at coincident locations

• impact on predictions and their variance

• importance for sampling design



Notes on covariance functions I

• typically, but not necessarily, decreasing functions

• for monotonic models, the pratical range is defined as the
distance where the correlation is 0 or 0.05 (for non-finite)

• assuming punctual support. Different supports (mis-aligned
data) requires regularization (change of support)

• Variogram representations (wider class of processes)

– Theoretical variogram (for cte mean)

2V (u) = Var{Y (xi)−Y (xj)} = E{[Y (xi)−Y (xj)]
2}

– intrinsic stationarity (intrinsic random functions,
Matheron,1973)

– validity (Gneiting, Sasvári and Schlather, 2001)



Covariance functions - some extensions

• Compactly supported covarianve functions

– spatial: Gneiting (2002)

– spatio-temporal (Zastavnyi & Porcu, 2009)

• Spatio-temporal covariance functions (Gneiting, 2002)

– stationarity, separability and symmetry

– review: Gneiting, Genton and Guttorp (2007)

• Multivariate extension of Matérn model
(Gneiting, Kleiber & Schlather, 2009)



Terminology for variograms
Under stationary Gaussian model:

V (u) = τ2 + σ2{1 − ρ(u;φ)}

• the nugget variance: τ2

• the sill: σ2 = Var{S(x)}
• the total sill: τ2 + σ2 = Var{Y (x)}
• the range: φ, such ρ0(u) = ρ(u/φ)

• the practical (effective) range: u0, such

– ρ(u) = 0 (finite range correlation models)

– ρ(u) = 0.95σ2 (correlation functions approaching
zero asymptotically)

– or, in terms of variogram V(u) = τ2 + 0.95σ2

– this is just a practical convention!



Schematic representation

The theoretical variogram is a function which sumarises all the
second order properties of the process
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Directional effects

• environmental conditions wind, flow, soil formation, etc)
can induce directional effects

• non-invariant properties of the cov. function under rota-
tion

• simplest model: geometric anisotropy

• new coordinates by rotation and stretching of the original
coordinates:

(x′
1, x

′
2) = (x1, x2)

(

cos(ψA) − sin(ψA)
sin(ψA) cos(ψA)

) (

1 0
0 1

ψR

)

• add two parameters to the covariance function

• (ψA, ψR) anisotropy angle and ratio parameters
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Simulating from the model

• For a finite set of locations x, S(x) is multivariate Gaus-
sian.

• A ”standard” way for obtaining (unconditional) simula-
tions of S(x) is:

– define the locations

– define values for model parameters

– compute Σ using the correlation function

– obtain Σ1/2, e.g. by Cholesky factorization of sin-
gular value decomposition

– obtain simulations S = Σ1/2Z where Z is a vector
of normal scores.



Simulating from the model (cont.)

• Large simulations are often need in practice and require
other methods, e.g.:

– Wood and Chan (1994) – fast fourier transforms

– Lantuéjoul (2002) – models and algorithms

– Schlather (2001) – R package RandomFields : im-
plements a diversity of algorithms (circulant embed-
ding, turning bands, . . . )

– Rue and Tjelmeland (2002) – approximation by Markov
Gaussian Random Fields
Gibbs scheme using approximated sparse (n− 1) ×
(n− 1) full conditionals (GMRFlib)



Constructing multivariate models

One example: A common-component model

• assume independent processes S∗
0(·), S∗

1(·) and S∗
2(·)

• Define a bivariate process S(·) = {S1(·), S2(·)}

• Sj(x) = S∗
0(x) + S∗

j (x) : j = 1, 2.

• S(·) is a valid bivariate process with covariance structure

Cov{Sj(x), Sj′(x− u)} = Cov 0(u) + I(j = j′)Cov j(u)

• for different units it requires an additional scaling pa-
rameters so that S∗

0j(x) = σ0jR(x) where R(x) has unit
variance.



Approaches for multivariate models

• CCM: Diggle and Ribeiro (2007); Bognola & Ribeiro
(2008); Fanshawe & Diggle (2010)

• LMC: linear model of corregionalization

• Books: Chilès and Delfiner, (1999); Wackernagel (2003)

Some recent developments:

• Schmidt & Gelfand (2003); Gelfand, Schmidt, Banerjee
& Sirmans (2004) – triangular structure and Bayesian
inference

• Reich & Fuentes (2007) – semiparametric

• Majundar et. al. (2009) – convolution

• Apanasovich & Genton (2010) – latent dimention

• Jun (2009) – multivariate processes on a globe

• Gneiting, Klieber & Schlather (2009) – multivariate Matérn



Non-stationary models

Stationarity is a convenient working assumption, which can be
relaxed in various ways.

• Functional relationship between mean and variance: some-
times handled by a data transformation

• Non-constant mean:

– replace constant µ by

µ(x) = Fβ =
k

∑

j=1

βjfj(x)

– trend surface and covariates
– deterministic vs stochastic: interpretation of the

process
– exploratory analysis: possible non-linear relations



• Non-stationary random variation:

– intrinsic variation a weaker hypothesis (process has
stationary increments, cf random walk model in time
series), widely used as default model for discrete
spatial variation (Besag, York and Molié, 1991).

– Spatial deformation methods (Sampson and Gut-
torp, 1992) seek to achieve stationarity by complex
transformations of the geographical space, x.

– spatial convolutions (Higdon, 1998, 2002; Fuentes e
Smith)

– low-rank models (Hastie, 1996)
– non-Euclidean distances (Rathburn, 1998)
– locally directional effects

Need to balance:
· increased flexibility of general modelling assumptions against
· over-modelling of sparse data,
leading to poor identifiability of model parameters.



An illustration
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GIS integration

An example with the aRT package

• (aRT API R - Terralib)

• http://www.leg.ufpr.br/aRT



PART 2

Parameter Estimation

and

Spatial Prediction



Opening remarks

• The canonical problem is spatial prediction of the form

Ŝ(x) = µ(x) +

n
∑

i=1

wi(x)(yi − µ(x))

• The prediction problem can be tackled by adopting some
criteria (e.g. minimise MSPE)

MSPE(T̂ ) = E [(T − T̂ )2] e.g. above T = S(x)

• However this requires knowledge about:

– the assumed model

– the model parameters

• need to infer first and second-moment properties of the
process from the available data



Inference (linear model)

• parameter estimation: likelihood based methods
(other approaches are also used)

• spatial prediction: simple kriging

Ŝ(x) = µ+

n
∑

i=1

wi(x)(yi − µ)

• straightforward extension for µ(x)

• Parameter uncertainty?
usually ignored in traditional geostatistics
(plug-in prediction)



An aside:

Distinguishing parameter estimation and
spatial prediction

• assume a set of locations xi : i = 1, . . . , n on a lattice
covering the area

• interest: average level of pollution over the region

• consider the sample mean:

S̄ = n−1
n

∑

i=1

Si

. . .



• within a parameter estimation problem

– estimator of the constant mean parameter µ = E [S(x)]

– precision given by the M.S.E. E{[(S̄ − µ)2]}
– Var [S̄] = n−2

∑n
i=1

∑n
i=1 Cov (Si, Sj) ≥ σ2/n

• within a prediction problem

– predictor of the spatial average SA = |A|−1
∫

A
S(x)dx

– precision by the M.S.E. E [(S̄ − SA)2], SA is r.v

– precision (can even approach zero) given by

E [(S̄ − SA)
2
] = n

−2

n
X

i=1

n
X

j=1

Cov (Si, Sj)

+ |A|
−2

Z

A

Z

A
Cov {S(x), S(x

′
)}dxdx

′

− 2(n|A|)
−1

n
X

i=1

Z

A
Cov {S(x), S(xi)}dx.



Exploratory Data Analysis (EDA)

• Non-spatial

– outliers

– non-normality

– arbitrary mean model: choice of potential covariates

• Spatial

– spatial outliers

– trend surfaces (scatterplots against covariates)

– other potential spatial covariates

– GIS tools



First moment properties (trend)
The OLS estimator

β̃ = (D′D)−1D′Y

is unbiased irrespective the covariance structure (assuming the
model is correct)
A more efficient GLS estimator:

β̂ = (D′V −1D)−1D′V −1Y

• unbiased and smaller variance

• MLE

• requires knowledge about covariance parameters

For non-cte mean, OLS residuals can inform about covariance
structure

R = Y −Dβ̃

Strategies: two stages (which can be interactive) or joint esti-
mation



EDA: A quick exploratory display
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EDA: Residual plots
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EDA: Circle plot
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Two possible visualisations: left – data values divided in quin-
tiles, right – gray shade proportional to data, circle sizes pro-
portional to a covariate value (elevation).



Second order properties
EDA: Empirical Variograms

• Theoretical variogram (for cte mean)

2V (u) = Var{Y (xi) − Y (xj)} = E{[Y (xi) − Y (xj)]
2}

• under the assumed Gaussian model:

V (u) = τ2 + σ2{1 − ρ(u;φ)}

• Empirical (semi-)variogram: V̂ (u)

V̂ (uij) = average{0.5[y(xi) − y(xj)]
2} = average{vij}

where each average is taken over all pairs [y(xi), y(xj)]
such that ||xi − xj|| ≈ u
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• variogram cloud: scatterplot of (uij, vij)

• the empirical variogram is derived from the variogram
cloud by averaging within bins: u− h/2 ≤ uij < u+ h/2

• sample variogram ordinates Vk; (k − 1)h < uij < kh

• convention uk = (k − 0.5)h (interval mid-point)

• may adopt distinct hk
• excludes zero from the smallest bin (deliberate)

• typically limited at a distance u < umax



Some topics on empirical variograms

• biased for non-constant mean

• higher order polynomials vs spatial correlation

• for a process with non-constant mean (covariates) replace
y(xi) by residuals r(xi) = y(xi) − µ̂(xi) from a trend
removal

• usage of kernel or spline smoothers however
notice 1

2
n(n− 1) points are not independent

bandwidth issues, considering exploratory purposes

• a diversity of alternative estimators is available
e.g. robust estimators (Genton, 1998a)

• Monte Carlo envelopes for empirical variograms



Exploring directional effects



Paradigms for parameter estimation

• Ad hoc (variogram based) methods

– compute an empirical variogram

– fit a theoretical covariance model

• Likelihood-based methods

– typically under Gaussian assumptions

– more generally needs MCMC or approximations

– Optimal under stated assumptions, robustness is-
sues

– full likelihood not feasible for large data-sets

– variations on the likelihood function (pseudo-likelihoods)

• Bayesian paradigma, combines estimation and prediction



Variogram model fitting
• fitting a typically non-linear variogram function (as e.g.

the Matérn) to the empirical variogram provides a way
to estimate the models parameters.

• e.g. a weighted least squares criteria minimises

W (θ) =
∑

k

nk{[V̄k − V (uk; θ)]}2

where θ denotes the vector of covariance parameters and
V̄k is average of nk variogram ordinates vij.

• in practice u is usually limited to a certain distance

• variations includes:
– fitting models to the variogram cloud
– other estimators for the empirical variogram
– different proposals for weights
– explicity account of covariance structure (Genton, 1998b)



Comments on variograms - I

Difficulties with empirical variograms

• vij ∼ V (uij)χ
2
1

• the vij are correlated

• the variogram cloud is therefore unstable, both pointwise
and in its overall shape

• binning removes the first objection to the variogram cloud,
but not the second

• is sensitive to mis-specification of µ(x)



Comments on variograms - II

• equally good fits for different ”extrapolations” at origin
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Comments on variograms - III

• correlation between variogram points points
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Empirical variograms for three simulations from the same model.



Comments on variograms - IV
• sensitivity to the specification of the mean

• solid smooth line: true model, dotted: empirical vari-
ogram, solide: empirical variogram from true residuals,
dashed: empirical variogram from estimated residuals.
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Comments on variograms - V
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Parameter estimation: maximum likelihood

For the basic geostatistical model

Y ∼ MVN(µ1, σ2R+ τ2I)

1 denotes an n-element vector of ones,

I is the n× n identity matrix

R is the n×n matrix with (i, j)th element ρ(uij) where uij =
||xi − xj||, the Euclidean distance between xi and xj.

Or more generally for

S(xi) = µ(xi) + Sc(xi)

µ(xi) = Dβ =

k
∑

j=1

fk(xi)βk

where dk(xi) is a vector of covariates at location xi



Y ∼ MVN(Dβ, σ2R+ τ2I)

The likelihood function is

L(β, τ, σ, φ, κ) ∝ −0.5{log |(σ2R+ τ2I)| +

(y −Dβ)′(σ2R+ τ2I)−1(y −Dβ)}.

• reparametrise ν2 = τ2/σ2 and denote σ2V = σ2(R+ν2I)

• the log-likelihood function is maximised for

β̂(V ) = (D′V −1D)−1D′V −1y

σ̂2(V ) = n−1(y −Dβ̂)′V −1(y −Dβ̂)

• concentrated likelihood: substitute (β, σ2) by (β̂, σ̂2) and
the maximisation reduces to

L(τr, φ, κ) ∝ −0.5{n log |σ̂2| + log |(R+ ν2I)|}



Some technical issues

• poor quadratic approximations, unreliable Hessian ma-
trices

• identifiability issues for more than two parameters in the
correlation function

• for models such as Matérn and powered exponential φ
and κ are not orthogonal

• For the Matérn correlation function we suggest to take κ
in a discrete set {0.5, 1, 2, 3, . . . , N} (”profiling”)

• other possible approach is reparametrization such as re-
placing φ by α = 2

√
κφ (Handcock and Wallis)

• stability: e.g. Zhang’s remarks on σ2/φ

• reparametrisations and asymptotics, e.g. θ1 = log(σ2/φ2κ)
and θ2 = log(φ2κ)



Note: variations on the likelihood
• we strongly favor likelihood based methods.

• examining profile likelihoods can be reavealing on model
identifiability and parameter uncertainty.

• restricted maximum likelihood is widely recommended
leading to less biased estimators but is sensitive to mis-
specification of the mean model. In spatial models dis-
tinction between µ(x) and S(x) is not sharp.

• approximate likelihoods are useful for large data-sets.

• composite likelihood uses independent contributions for
the likelihood function for each pair of points.

• Markov Random Fields can be used to approximate geo-
statistical models.

• . . .



Example: Surface elevation data
model with constant mean

model µ̂ σ̂2 φ̂ τ̂ 2 logL

κ = 0.5 863.71 4087.6 6.12 0 −244.6

κ = 1.5 848.32 3510.1 1.2 48.16 −242.1

κ = 2.5 844.63 3206.9 0.74 70.82 −242.33

model with linear trend

model β̂0 β̂1 β̂2 σ̂2 φ̂ τ̂ 2 logL

κ = 0.5 919.1 −5.58 −15.52 1731.8 2.49 0 −242.71

κ = 1.5 912.49 −4.99 −16.46 1693.1 0.81 34.9 −240.08

κ = 2.5 912.14 −4.81 −17.11 1595.1 0.54 54.72 −239.75
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Example: experiment on systematic design



Example: experiment on systematic design

Motivation

• missing data

• reliable inference





Prediction – general results

goal: predict the realised value of a (scalar) r.v. T , using
data y a realisation of a (vector) r.v. Y .

predictor: of T is any function of Y , T̂ = t(Y )

a criterion – MMSPE: the best predictor minimises

MSPE(T̂ ) = E [(T − T̂ )2]

The MMSEP of T is T̂ = E(T |Y )

The prediction mean square error of T̂ is

E[(T − T̂ )2] = EY [Var(T |Y )],

(the prediction variance is an estimate of MSPE(T̂ )).

E[(T − T̂ )2] ≤ Var(T ), with equality if T and Y are inde-
pendent random variables.



Prediction – general results (cont.)

• We call T̂ the least squares predictor for T , and Var(T |Y )
its prediction variance

• Var(T )−Var(T |Y ) measures the contribution of the data
(exploiting dependence between T and Y )

• point prediction, prediction variance are summaries

• complete answer is the distribution [T |Y ] (analytically or
a sample from it)

• not transformation invariant:
T̂ the best predictor for T does NOT necessarily imply
that g(T̂ ) is the best predictor for g(T ).



Prediction – Linear Gaussian model

Suppose the target for prediction is T = S(x)

The MMSEP is T̂ = E[S(x)|Y ]

• [S(x), Y ] are jointly multivariate Gaussian. with mean
vector µ1 and variance matrix

[

σ2 σ2r′

σ2r τ2I + σ2R

]

where r is a vector with elements ri = ρ(||x − xi||) : i =
1, . . . , n.

• T̂ = E[S(x)|Y ] = µ+ σ2r′(τ2I + σ2R)−1(Y − µ1) (1)

• Var[S(x)|Y ] = σ2 − σ2r′(τ2I + σ2R)−1σ2r



Prediction – Linear Gaussian model (cont.)

• for the Gaussian model T̂ is linear in Y , so that

T̂ = w0(x) +

n
∑

i=1

wi(x)Yi

• equivalent to a least squares problem to find wi which
minimise MSPE(T̂ ) within the class of linear predictors.

• Because the conditional variance does not depend on Y ,
the prediction MSE is equal to the prediction variance.

• Equality of prediction MSE and prediction variance is a
special property of the multivariate Gaussian distribu-
tion, not a general result.



Prediction – Linear Gaussian model (cont.)

• Construction of the surface Ŝ(x), where T̂ = Ŝ(x) is given
by (1), is called simple kriging.

• Assumes known model parameters.

• This name is a reference to D.G. Krige, who pioneered
the use of statistical methods in the South African mining
industry (Krige, 1951).



Features of spatial prediction

The minimum mean square error predictor for S(x) is given by

T̂ = Ŝ(x) = µ+

n
∑

i=1

wi(x)(Yi − µ)

= {1 −
n

∑

i=1

wi(x)}µ+

n
∑

i=1

wi(x)Yi

• shows the predictor Ŝ(x) compromises between its un-
conditional mean µ and the observed data Y ,

• the nature of the compromise depends on the target loca-
tion x, the data-locations xi and the values of the model
parameters,

• wi(x) are the prediction weights.
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Swiss rainfall data – trans-Gaussian model
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κ µ̂ σ̂2 φ̂ τ̂2 log L̂
0.5 18.36 118.82 87.97 2.48 -2464.315
1 20.13 105.06 35.79 6.92 -2462.438
2 21.36 88.58 17.73 8.72 -2464.185
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PART 3

Bayesian Inference



Bayesian Basics
Bayesian inference deals with parameter uncertainty by treat-
ing parameters as random variables, and expressing inferences
about parameters in terms of their conditional distributions,
given all observed data.

• model specification includes model parameters:

[Y, θ] = [θ][Y |θ]

• inference using Bayes’ Theorem:

[Y, θ] = [Y |θ][θ] = [Y ][θ|Y ]

• to derive the posterior distribution

[θ|Y ] = [Y |θ][θ]/[Y ] ∝ [Y |θ][θ]

• The prior distribution [θ] express the uncertainty about
the model parameters



• The posterior distribution [θ|Y ] express the revised un-
certainty after observing Y

• conjugacy is achieved in particular models where conve-
nient choices of [θ] produces [θ|Y ] within the same family

• more generally [θ|Y ] may be an unknown and [Y ] =
∫

[Y |θ][θ]dθ
may need to be evaluated numerically.

• probability statements and estimates are based on the
posterior density obtained through

p(θ|y) =
ℓ(θ; y)π(θ)

∫

ℓ(θ; y)π(θ)dθ

are usually expressed as summary statistics (mean, me-
dian, mode) and/or Bayesian credibility intervals

• credible intervals are not uniquely defined (e.g. quantile
based, highest density interval, etc)



Prediction

For Bayesian prediction expand the Bayes’ theorem to include
the prediction target, allowing for uncertainty on model pa-
rameters to be accounted for.

• and for prediction

[Y, T, θ] = [Y, T |θ][θ]

• derive the predictive distribution

[T |Y ] =

∫

[T, θ|Y ]dθ =

∫

[T |Y, θ][θ|Y ]dθ

• can be interpreted as a weighted prediction over possible
values of [θ|Y ]

• in general, as data becomes more abundant [θ|Y ] concen-
trates around θ̂



Bayesian inference for the geostatistical model

Bayesian inference for the geostatistcal model expands the pre-
vious results acknowledging for Y and S as specified by the
adopted model.

• model specification:

[Y, S, θ] = [θ][Y, S|θ] = [θ][S|θ][Y |S, θ]

• inference using Bayes’ Theorem:

[Y, S, θ] = [Y, S|θ][θ] = [Y ][θ, S|Y ]

• to derive the posterior distribution

[θ|Y ] =

∫

[θ, S|Y ]dS =

∫

[Y |S, θ][S|θ][θ]
[Y ]

dS



• where [Y ] =
∫ ∫

[Y |θ][S|θ][θ]dSdθ is typically difficult to
evaluate

• For prediction

[Y, T, S, θ] = [Y, T |S, θ][S|θ][θ]

• derive the predictive distribution

[T |Y ] =

∫ ∫

[T, S, θ|Y ]dSdθ =

∫ ∫

[T |Y, S, θ][S, θ|Y ]dSdθ

• and explore the conditional independence structure of
the model to simplify the calculations



Notes I

• likelihood function occupies a central role in both classi-
cal and Bayesian inference

• plug-in prediction corresponds to inferences about [T |Y, θ̂]

• Bayesian prediction is a weighted average of plug-in pre-
dictions, with different plug-in values of θ weighted ac-
cording to their conditional probabilities given the ob-
served data.

• Bayesian prediction is usually more cautious than plug-in
prediction.
Allowance for parameter uncertainty usually results in
wider prediction intervals



Notes II

1. The need to evaluate the integral which defines [Y ] rep-
resented a major obstacle to practical application,

2. development of Markov Chain Monte Carlo (MCMC)
methods has transformed the situation.

3. BUT, for geostatistical problems, reliable implementa-
tion of MCMC is not straightforward. Geostatistical
models don’t have a natural Markovian structure for the
algorithms work well.

4. in particular for the Gaussian model other algorithms can
be implemented.



Results for the Gaussian models - I

• fixing covariance parameters and assuming a (conjugate)
prior for β

β ∼ N
(

mβ ; σ2Vβ
)

• The posterior is given by

[β|Y ] ∼ N((V −1
β +D′R−1D)−1(V −1

β mβ +D′R−1y) ;

σ2 (V −1
β +D′R−1D)−1)

∼ N
(

β̂ ; σ2 Vβ̂

)

• and the predictive distribution is

p(S∗|Y, σ2, φ) =

∫

p(S∗|Y, β, σ2, φ) p(β|Y, σ2, φ) dβ.



• with mean and variance given by

E[S
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• predicted mean balances between prior and weighted av-
erage of the data

• The predictive variance has three interpretable compo-
nents: a priori variance, the reduction due to the data
and the uncertainty in the mean.

• Vβ → ∞ results can be related to REML and universal
(or ordinary) kriging.



Results for the Gaussian models - II

• fixing correlation parameters and assuming a (conjugate)
prior for [β, σ2] ∼ Nχ2

ScI

(

mb, Vb, nσ, S
2
σ

)

given by:

[β|σ2] ∼ N
(

mβ ; σ2Vβ
)

and [σ2] ∼ χ2
ScI(nσ, S

2
σ)

• The posterior is [β, σ2|y, φ] ∼ Nχ2
ScI

(

β̃, Vβ̃, nσ + n, S2
)

β̃ = Vβ̃(V
−1
b mb +D′R−1y)

Vβ̃ = (V −1
b +D′R−1D)−1

S2 =
nσS

2

σ+m′

bV
−1

b
mb+y

′R−1y−β̃′V
−1

β̃
β̃

nσ+n



• The predictive distribution [S∗|y] ∼ tnσ+n

(

µ∗, S2Σ∗
)

• with mean and variance given by

E[S∗|y] = µ∗,

Var[S∗|y] =
nσ + n

nσ + n− 2
S2Σ∗,

µ
∗

= (D
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• valid if τ2 = 0

• for τ2 > 0, ν2 = τ2/σ2 can regarded as a correlation
parameter



Results for the Gaussian models - III

Assume a prior p(β, σ2, φ) ∝ 1
σ2p(φ).

• The posterior distribution for the parameters is:

p(β, σ2, φ|y) = p(β, σ2|y, φ) p(φ|y)

• where p(β, σ2|y, φ) can be obtained analytically and

pr(φ|y) ∝ pr(φ) |Vβ̂| 1

2 |Ry|−
1

2 (S2)− n−p

2

• analogous results for more general prior:

[β|σ2, φ] ∼ N
(

mb, σ
2Vb

)

and [σ2|φ] ∼ χ2
ScI

(

nσ, S
2
σ

)

,

• choice of prior for φ can be critical. (Berger, De Oliveira
& Sansó, 2001)



Algorithm 1:

1. Discretise the distribution [φ|y], i.e. choose a range of
values for φ which is sensible for the particular applica-
tion, and assign a discrete uniform prior for φ on a set of
values spanning the chosen range.

2. Compute the posterior probabilities on this discrete sup-
port set, defining a discrete posterior distribution with
probability mass function p̃r(φ|y), say.

3. Sample a value of φ from the discrete distribution p̃r(φ|y).

4. Attach the sampled value of φ to the distribution [β, σ2|y, φ]
and sample from this distribution.

5. Repeat steps (3) and (4) as many times as required; the
resulting sample of triplets (β, σ2, φ) is a sample from the
joint posterior distribution.



The predictive distribution is given by:

p(S∗|Y ) =

∫ ∫ ∫

p(S∗, β, σ2, φ|Y ) dβ dσ2 dφ

=

∫ ∫ ∫

p
(

s∗, β, σ2|y, φ
)

dβ dσ2 pr(φ|y) dφ

=

∫

p(S∗|Y, φ) p(φ|y) dφ.
Algorithm 2:

1. Discretise [φ|Y ], as in Algorithm 1.

2. Compute the posterior probabilities on the discrete sup-
port set. Denote the resulting distribution p̃r(φ|y).

3. Sample a value of φ from p̃r(φ|y).

4. Attach the sampled value of φ to [s∗|y, φ] and sample from
it obtaining realisations of the predictive distribution.

5. Repeat steps (3) and (4) to generate a sample from the
required predictive distribution.



Notes

1. The algorithms are of the same kind to treat τ and/or κ
as unknown parameters.

2. We specify a discrete prior distribution on a multi-dimensional
grid of values.

3. This implies extra computational load (but no new prin-
ciples)



Elevation data
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Table 1: Swiss rainfall data: posterior means and 95% central quantile-

based credible intervals for the model parameters.
parameter estimate 95% interval

β 144.35 [53.08 , 224.28]
σ2 13662.15 [8713.18 , 27116.35]
φ 49.97 [30 , 82.5]
ν2 0.03 [0 , 0.05]
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Generalized linear geostatistical model

• Preserving the assumption of a zero mean, stationary
Gaussian process S(·),

• our basic model can be generalized replacing the assump-
tion of mutually independent Yi|S(·) ∼ N(S(x), τ2)
by assuming
Yi|S(·) are mutually independent within the class of gen-
eralized linear models (GLM)

• with a link function h(µi) =
∑p
j=1 dijβj + S(xi)

• this defines a generalized linear mixed model (GLMM)
with correlated random effects

• which provides a way to adapt classical GLM for geosta-
tistical applications.



GLGM

• usually just a single realisation is available, in contrast
with GLMM for longitudinal data analysis

• The GLM approach is most appealing when follows an
natural sampling mecanism such as Poisson model for
counts and logist-linear models for binary/binomial re-
sponses

• in principle transformed models can be considered for
skewed distributions

• variograms for such processes can be obtained although
providing a less obvious summary statistics

• empirical variograms of GLM residuals can be used for
exploratory analysis



An example: a Poisson model

• [Y (xi) | S(xi)] is Poisson with density

f(yi; ζi) = exp(−ζi)ζyi

i /yi! yi = 0, 1, 2, . . .

• link: E[Y (xi) | S(xi)] = ζi = h(µi) = h(µ+ S(xi))

• log-link h(·) = exp(·)

• more generaly the models can be expanded allowing for
covariates and/or uncorrelated random effects

h(µi) =

p
∑

j=1

dijβj + S(xi) + Zi

which, differently from Gaussian models, distinguish be-
tween the terms of the nugget effect: Poisson variation
accounts for the anologue of measurement error and spa-
tially uncorrelated component to the short scale variation
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Simulations from the Poisson model; grey-scale shading repre-
sents the data values on a regular grid of sampling locations and
contours represents the conditional expectation surface, with
µ = 0.5 on the left panel and µ = 5 on the right panel.



Another example: a Binomial logistic model

• [Y (xi) | S(xi)] is Binomial with density

f(yi; ζi) =

(

ni

yi

)

ζyi

i (1 − ζi)
(ni−yi) yi = 0, 1, . . . , ni

• logistic link: E[Y (xi) | S(xi)] = niζi = exp{µi}
1+exp{µi}

• mean: µi = µ+ S(xi)

• again can be expanded as

h(µi) =

p
∑

j=1

dijβj + S(xi) + Zi

• typically more informative with larger values of ni



An simulated example from binary model
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• in this example the binary sequence is not much infor-
mative on S(x)

• wide intervals compared to the prior mean of p(x)



Inference

• Likelihood function

L(θ) =

∫

IRn

n
∏

i

f(yi;h
−1(si))f(s | θ)ds1, . . . , dsn

• Involves a high-dimensional (numerical) integration

• MCMC algorithms can exploit the conditional indepen-
dence scructure of the model
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Prediction with known parameters

• Simulate s(1), . . . , s(m) from [S|y] (using MCMC).

• Simulate s∗(j) from [S∗|s(j)], j = 1, . . . ,m
(multivariate Gaussian)

• Approximate E[T (S∗)|y] by 1
m

∑m
j=0 T (s∗(j))

• if possible reduce Monte Carlo error by

– calculating E[T (S∗)|s(j)] directly

– estimate E[T (S∗)|y] by 1
m

∑m
j=0 E[T (S∗)|s(j)]



MCMC for conditional simulation

• Let S = D′β + Σ1/2Γ, Γ ∼ Nn(0, I).

• Conditional density of [Γ |Y = y]

f(γ|y) ∝ f(y|γ)f(γ)

Langevin-Hastings algorithm

• Proposal: γ′ from a Nn(ξ(γ), hI) where ξ(γ) = γ +
h
2
∇ log f(γ | y).

• E.g for the Poisson-log Spatial model: ∇ log f(γ|y) =
−γ + (Σ1/2)′(y − exp(s)) where s = Σ1/2γ.

• Expression generalises to other generalised linear spatial
models.

• MCMC output γ1, . . . , γm. Multiply by Σ1/2 and obtain:
s(1), . . . , s(m) from [S|y].



MCMC for Bayesian inference

Posterior:

• Update Γ from [Γ|y, β, log(σ), log(φ)]
(Langevin-Hasting described earlier)

• Update β from [β|Γ, log(σ), log(φ)] (RW-Metropolis)

• Update log(σ) from [log(σ)|Γ, β, log(φ)] (RW-Metropolis)

• Update log(φ) from [log(φ)|Γ, β, log(σ)] (RW-Metropolis)

Predictive:

• Simulate (s(j), β(j), σ2(j), φ(j)), j = 1, . . . ,m
(using MCMC)

• Simulate s∗(j) from [S∗|s(j), β(j), σ2(j), φ(j)],
j = 1, . . . ,m (multivariate Gaussian)



Comments

• Marginalisation w.r.t β and σ2 is possible using conjugate
priors

• Discrete prior for φ is an advantage (reduced computing
time).

• thinning: not to store a large sample of high-dimensional
quantities.

• similar algorithms for MCMC maximum likelihood esti-
mation



A simulated Poisson data
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R code for simulation

## setting the seed

> set.seed(371)

## defining the data locations on a grid

> cp <- expand.grid(seq(0, 1, l = 10), seq(0, 1, l = 10))

## simulating from the S process

> s <- grf(grid = cp, cov.pars = c(2, 0.2), cov.model = "mat",

+ kappa = 1.5)

## visualising the S process

> image(s, col = gray(seq(1, 0.25, l = 21)))

## inverse link function

> lambda <- exp(0.5 + s$data)

## simulating the data

> y <- rpois(length(s$data), lambda = lambda)

## visualising the data

> text(cp[, 1], cp[, 2], y, cex = 1.5, font = 2)



R code for the data analysis

set.seed(371)

## calibracao do algoritmo MCMC

MCc <- mcmc.control(S.scale=0.025, phi.sc=0.1, n.iter=110000,

burn.in=10000, thin=100, phi.start=0.2)

## especificacao de priors

PGC <- prior.glm.control(phi.prior="exponential", phi=0.2,

phi.discrete=seq(0,2,by=0.02),tausq.rel=0)

## opo de saida

OC <- output.glm.control(sim.pred=T)

## escolhendo 2 localizacoes para predicao

locs <- cbind(c(0.75, 0.15), c(0.25, 0.5))

##

pkb <- pois.krige.bayes(dt, loc=locs, prior=PGC, mcmc=MCc, out=OC)



Summaries of the posterior for the simulated Poisson data:
posterior means and 95% central quantile-based intervals.

parameters true values posterior mean 95% interval
β 0.5 0.4 [0.08 , 1.58]
σ2 2.0 1.24 [0.8 , 2.76]
φ 0.2 0.48 [0.3 , 1.05]
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Rongelap Island

— see other set of slides —



The Gambia malaria

— see other set of slides —



Covariance functions and variograms

• In non-Gaussian settings, the variogram is a less natural
summary statistic but can still be useful as a diagnostic
tool

• for GLGM the model with constant mean:

E [Y (xi)|S(xi)] = µi = g(α+ Si) vi = v(µi)

γY (u) = E[
1

2
(Yi − Yj)

2]

=
1

2
ES[EY [(Yi − Yj)

2|S(·)]]

=
1

2

(

ES[{g(α+ Si) − g(α+ Sj)}2] + 2ES[v(g(α+ Si))]

≈ g′(α)2γS(u) + τ̄2



• the variogram on the Y -scale is approximately propor-
tional to the variogram of S(·) plus an intercept

• the intercept represents an average nugget effect induced
by the variance of the error distribution of the model

• however it relies on a linear approximation to the inverse
link function

• it may be inadequate for diagnostic analysis since the
essence of the generalized linear model family is its ex-
plicit incorporation of a non-linear relationship between
Y and S(x).

• The exact variogram depends on higher moments of S(·)

• explicit results are available only in special cases.



Spatial survival analysis

• specified through hazard function h(t) = f(t)/{1−F (t)},

• h(t)δt is the conditional probability event will occour in
the interval (t, t+ δt), given it has not occour until time
t

• proportional hazards model with λ0(t), an unspecified base-
line hazard function

hi(t) = λ0(t) exp(d′
iβ)

• hi(t)/hj(t) does not change over time

• alternativelly, fully specified models are proposed

• frailty corresponds to random effects can be introduced by

hi(t) = λ0(t) exp(z′
iβ + Ui) = λ0(t)Wi exp(d′

iβ)



• e.g. log-Gaussian frailty model and gamma frailty model

• replacing Ui by S(xi) introduces spatial frailties (Li &
Ryan, 2002; Banerjee, Wall & Carlin, 2003)

• E [S(x)] = −0.5Var [S(x)] preserves interpretation of exp{S(x)}
as a frailty process

• other possible approaches, e.g. Henderson, Shimakura
and Gorst (2002) extends the gamma-frailty model



PART 3

Geostatistical design



Geostatistical models for point process

• Two possible connections between point process and geo-
statistics:

1. measurement process replaced by a point process

2. choice of data locations for Y (xi)



Cox point processes
Definition:
A Cox process is a point process in which there is an unob-
served, non-negative-valued stochastic process S = {S(x) : x ∈
IR2} such that, conditional on S, the observed point process is
an inhomogeneous Poisson process with spatially varying in-
tensity S(x).

• fits into the general geostatistical framework

• derived as limiting form of a geostatistical model as δ → 0
for locations on lattice-spacing δ

• log-Gaussian Cox process is a tractable form of Cox pro-
cess (e.g. Möller, Syversveen and Waagepetersen,1998;
Brix & Diggle, 2001)

• inference generally requires computationally intensive Monte
Carlo methods, implementation involves careful tuning

• moment-based method provides an analogue of the vari-
ogram, for exploratory analysis and preliminary estima-
tion of model parameters



Cox point processes

• intensity surface Λ(x) = exp{S(x)}

• has mean and variance λ = exp{µ+ 0.5γ(0)}

• also represents the expected number of points per unit
area in the Cox process, and φ(u) = exp{γ(u)} − 1.

• K(s): reduced second moment measure of a stationary
point process

• λK(s): expected number of further points within dis-
tance s of an arbitrary point of the process

• For the log-Gaussian Cox process

K(s) = πs2 + 2πλ−2

∫ s

0

φ(u)udu



• A non-parametric estimator:

K̂(s) =
|A|

n(n− 1)

n
∑

i=1

∑

j 6=i

w−1
ij I(uij ≤ s)

• wij allows for edge correction

• preliminary estimates of model parameters can then be
obtained by minimising a measure of the discrepancy be-
tween theoretical and empirical K-functions



Geostatistics and marked point processes

locations X signal S measurements Y

• Usually write geostatistical model as

[S, Y ] = [S][Y |S]

• What if X is stochastic? Usual implicit assumption is

[X,S, Y ] = [X][S][Y |S],

hence can ignore [X] for inference about [S, Y ].

• Resulting likelihood:

L(θ) =

∫

[S][Y |S]dS



Marked point processes

locations X marks Y

• X is a point process

• Y need only be defined at points of X

• natural factorisation of [X,Y ]?



Example 1. Spatial distribution of disease

X : population at risk
Y : case or non-case

• Natural factorisation is [X,Y ] = [X][Y |X]

• Usual scientific focus is [Y |X]

• Hence, can ignore [X]

Example 2. Growth of natural forests

X : location of tree
Y : size of tree

• Two candidate models:

– competitive interactions ⇒ [X,Y ] = [X][Y |X]
– environmental heterogeneity ⇒ [X,Y ] = [Y ][X|Y ]?

• focus of scientific interest?



Preferential sampling

locations X signal S measurements Y

• Conventional model:

[X,S, Y ] = [S][X][Y |S] (1)

• Preferential sampling model:

[X,S, Y ] = [S][X|S][Y |S,X] (2)

• Key point for inference: even if [Y |S,X] in (2) and [Y |S]
in (1) are algebraically the same, the term [X|S] in (1)
cannot be ignored for inference about [S, Y ], because of
the shared dependence on the unobserved process S



A model for preferential sampling

[X,S, Y ] = [S][X|S][Y |S,X]

• [S] = SGP(0, σ2, ρ) (stationary Gaussian process)

• [X|S] = inhomogenous Poisson process with intensity

λ(x) = exp{α+ βS(x)}

• [Y |S,X] = N{µ+ S(x), τ2} (independent Gaussian)

Diggle, Menezes & Su (2009)



Simulation of preferential sampling model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Y
 C

oo
rd

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Y
 C

oo
rd

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Y
 C

oo
rd

Locations (dots) and underlying signal process (grey-scale):

• left-hand panel: uniform non-preferential

• centre-panel: clustered preferential

• right-hand panel: clustered non-preferential



Likelihood inference

[X,S, Y ] = [Y |S,X][X|S][S]

data are X and Y , hence likelihood is

L(θ) =

∫

[X,S, Y ]dS = ES [[Y |S,X][X|S]]

S = {SX , S−X}: [S|Y ] = [SX |Y ][X−X |SX ]; [Y |X,S] = [Y |SX ]

L(θ) =

∫

[X|S]
[Y |SX ]

[SX |Y ]
[SX ][Y |S]dS = ES|Y

[

[X|S]
[Y |SX ]

[SX |Y ]
[SX ]

]

evaluate expectation by Monte Carlo (with S on a lattice)

LMC(θ) = m−1
m
∑

j=1

[X|Sj]
[Y |SX ]

[SX |Y ]
[SX ]

requires (efficient) conditional simulations [S|Y ]



Geostatistical design

• Retrospective: add to, or delete from, an existing set of
measurement locations xi ∈ A : i = 1, . . . , n.

• Prospective: choose optimal positions for a new set of
measurement locations xi ∈ A : i = 1, . . . , n.

For a compreensive account see Müller (2007)



Näıve design folklore

• Spatial correlation decreases with increasing distance.

• Therefore, close pairs of points are wasteful.

• Therefore, spatially regular designs are a good thing.



Less näıve design folklore

• Spatial correlation decreases with increasing distance.

• Therefore, close pairs of points are wasteful if you know
the correct model.

• But in practice, at best, you need to estimate unknown
model parameters.

• And to estimate model parameters, you need your design
to include a wide range of inter-point distances.

• Therefore, spatially regular designs should be tempered
by the inclusion of some close pairs of points.



Examples of compromise designs
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Designs for parameter estimation

Comparison of random and square lattice designs, each with n = 100 sample locations, with respect to
three design criteria: spatial maximum of mean square prediction error M (x); spatial average of mean
square prediction error M (x); scaled mean square error, 100 × MSE(T ), for T =

R

S(x)dx. The

simulation model is a stationary Gaussian process with parameters µ = 0, σ2 + τ 2 = 1, correlation
function ρ(u) = exp(−u/φ) and nugget variance τ 2. The tabulated figures are averages of each
design criterion over N = 500 replicate simulations.

max M (x) average M (x) MSE(T )
Model parameters Random Lattice Random Lattice Random Lattice

φ = 0.05 9.28 8.20 0.77 0.71 0.53 0.40

τ 2 = 0 φ = 0.15 5.41 3.61 0.40 0.30 0.49 0.18
φ = 0.25 3.67 2.17 0.26 0.19 0.34 0.10

φ = 0.05 9.57 8.53 0.81 0.76 0.54 0.41

τ 2 = 0.1 φ = 0.15 6.22 4.59 0.50 0.41 0.56 0.28
φ = 0.25 4.44 3.34 0.37 0.30 0.47 0.22

φ = 0.05 10.10 9.62 0.88 0.86 0.51 0.40

τ 2 = 0.3 φ = 0.15 7.45 6.63 0.65 0.60 0.68 0.43
φ = 0.25 6.23 5.70 0.55 0.51 0.58 0.38



A Bayesian design criterion

Assume goal is prediction of S(x) for all x ∈ A.

[S|Y ] =

∫

[S|Y, θ][θ|Y ]dθ

For retrospective design, minimise

v̄ =

∫

A

Var{S(x)|Y }dx

For prospective design, minimise

E(v̄) =

∫

y

∫

A

Var{S(x)|y}f(y)dy

where f(y) corresponds to

[Y ] =

∫

[Y |θ][θ]dθ



Results

Retrospective: deletion of points from a monitoring network
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Selected final designs
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Prospective: regular lattice vs compromise designs

0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
es

ig
n 

cr
ite

rio
n

τ2=0

Regular
Infilling
Close pairs

0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
τ2=0.2

Regular
Infilling
Close pairs

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7
τ2=0.4

Regular
Infilling
Close pairs

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

D
es

ig
n 

cr
ite

rio
n

Maximum φ

τ2=0.6

Regular
Infilling
Close pairs

0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

Maximum φ

τ2=0.8

Regular
Infilling
Close pairs





Monitoring salinity in the Kattegat basin
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Solid dots are locations deleted for reduced design.
Diggle and Lophaven (2004)



Further examples

1. modelling fish stocks in the Portuguese coast

2. modelling geostatistical compositional data



Further remarks on geostatistical design

1. Conceptually more complex problems include:

(a) design when some sub-areas are more interesting
than others;

(b) design for best prediction of non-linear functionals
of S(·);

(c) multi-stage designs

(d) spatio-temporal designs

2. Theoretically optimal designs may not be realistic

3. Goal here is NOT optimal design, but to suggest
constructions for good, general-purpose designs.



Closing remarks

• Geostatistical problems can be treated under statistical
modelling approach

• Parameter uncertainty can have a material impact on
prediction

• Bayesian paradigm deals naturally with parameter un-
certainty

• Implementation through MCMC is not wholly satisfac-
tory:

– sensitivity to priors?

– convergence of algorithms?

– routine implementation on large data-sets?



• Model-based approach clarifies distinctions between:

– the substantive problem;

– formulation of an appropriate model;

– inference within the chosen model;

– diagnostic checking and re-formulation.

• Analyse problems, not data:

– what is the scientific question?

– what data will best allow us to answer the question?

– what is a reasonable model to impose on the data?

– inference: avoid ad hoc methods if possible

– fit, reflect, re-formulate as necessary

– answer the question.



Some computational resources

• R-project:
http://www.R-project.org

• CRAN spatial task view:
http://cran.r-project.org/src/contrib/Views/Spatial.html

• AI-Geostats web-site:
http://www.ai-geostats.org

Mostly used for this notes:

• geoR package:
http://www.leg.ufpr.br/geoR

• geoRglm package:
http://www.leg.ufpr.br/geoRglm



• RandomFields package:
http://www.r-project.org


