SKATER

Spatial "K"luster Analysis Through Edge Removal Extensions, possible applications and computational implementation

Paulo Justiniano Ribeiro Jr

LEG:Laboratório de Estatística e Geoinformação / UFPR

In collaboration with:

Elias Teixeira Krainski (LEG/UFPR)

Renato Martins Assunção (LESTE/UFMG)

http://www.leg.ufpr.br
e-mail:paulojus@ufpr.br

CHICAS

Lancaster, UK 20 – 22 de Maio de 2010

Opening	SKATER	Extensions	Other applications
0	0000000	0000000	00
IBC-2010/Flo	ripa e 55 RBRAS		

International Biometrics Conference &

55^a Reunião da Região Brasileira da Sociedade Internacional de Biometria

- Organization: IBS, Rbras, RArg
- Ø 05 a 10 december de 2010, Florianópolis, SC, Brasil
- satelite events (opened to proposals)
- Free/excursion day (and RBras/RArg meeting) on wednesday, 07/12
- http://www.ibc-floripa-2010.org/ and http://www.tibs.org

Opening	SKATER	Extensions	Other applications
0•			
Outline			

- Motivatition
- Basics of SKATER
- Computational implementation
- Extensions and fundamentals
- Some applications
- Final remarks

SKATER •0000000

Extensions

Other applications

Motivating Examples I: Living condition indexes in BH

Saude

Educacao

Crianca

Opening	SKATER	Extensions	Other applications
	0000000		
Clustering a	and regionalization		

- Olustering:
 - *n* individuals with their "atributes" $\rightarrow k$ "homogeneous" groups
 - group composition (possibly with minimal number)
 - how many groups?
- Regionalization:
 - classification procedure
 - applied to spatial objects (with an areal representation)
 - groups them into homogeneous contiguous regions
- Why?
 - detecting heterogeneous sub-regions ("step")
 - exploratory
 - administrative/management purposes

• ...

reduced number of possible groups

Opening	SKATER	Extensions	Other applications
00	0000000	00000000	
Approaches			

non-spatial clustering + neighbouring preserving classification

- 2 steps
- possibly too many groups

Clustering including (weighted) spatial covariates

- SAGE (spatial analysis GIS environment)
- objective function involves homogeneity, compactness and equality

explicit use of neighbouring structure in optimization

- implicit constraints
- AZP (automatic zonning procedure)
- computationally expensive

Opening	SKATER	Extensions	Other applications
	0000000		
The SKATER	annroach		

- algorithm of type (3)
- graph to introduce/represent neighbourhood
 - vertices (units) + edges
 - "cost" of edges: dissimilarities
- heuristics for prunning
 - minimal 1 group graph (MST: minimal spanning tree)
 - regionalization \rightarrow optimal graph partitioning

0	pe	ni	g	

SKATER

Extensions

Skater in action I

0	pe	ni	n	g

SKATER

Extensions 00000000

Skater in action II

An "R"-ish templat	e for the analysis		
00	00000000	0000000	00
Opening	SKATER	Extensions	Other applications

spatial packages: sp, spdep, ...

Read attributes and the map read.table() and readShapePoly()

standardize data (scale())

- neighbourhood list (poly2nb())
- Scosts for edges (dissimilarities) (nbcosts())
- Weighted neighbourhood structure (nb2listw())
- minimum spanning tree (mstree())
- partition (skater())

Yet another examp	е		
Opening OO	0000000	00000000	00
	SKATER	Extensions	Other applications

Opening	SKATER	Extensions	Other applications
		0000000	
Extending S	KATER		

- euclidean, mahalanobis, ...
- density based measurements (non-Gaussian data)

measures of homogeneity

- distance to the mean(s)
- likelihood based measures, criteria for number of groups

- areal data
- point processes, geostatistical data, time series, independent observations

Opening	SKATER	Extensions	Other applications
		0000000	
Extending SKATER			

- euclidean, mahalanobis, ...
- density based measurements (non-Gaussian data)

measures of homogeneity

- distance to the mean(s)
- likelihood based measures, criteria for number of groups

- areal data
- point processes, geostatistical data, time series, independent observations

Opening	SKATER	Extensions	Other applications
		0000000	
Extending SKATER			

- euclidean, mahalanobis, ...
- density based measurements (non-Gaussian data)

measures of homogeneity

- distance to the mean(s)
- likelihood based measures, criteria for number of groups

- areal data
- point processes, geostatistical data, time series, independent observations

Opening	SKATER	Extensions	Other applications
		0000000	
Extending SKATER			

- euclidean, mahalanobis, ...
- density based measurements (non-Gaussian data)

measures of homogeneity

- distance to the mean(s)
- likelihood based measures, criteria for number of groups

- areal data
- point processes, geostatistical data, time series, independent observations

Opening	SKATER	Extensions	Other applications	
OO	00000000	○●○○○○○○		
Minimum spanning tree				

- connected graph (nodes v, edges e, attributes y) path between any pair (v_i, v_j)
- tree (no circuit)
- spanning tree *n* nodes $V = (v_1, ..., v_n)$ and n 1 edges $E = (e_1, ..., e_{n-1})$
- costs for each edge (dissimilarities) $d(v_i, v_j) = d(e_k) = \sum_l (y_{il} y_{jl})^2$
- minimum spanning tree (MST): set $\{e_1, \dots, e_{n-1}\}$ minimizing $\sum_{k=1}^{n-1} d(e_k)$
- removal of an edge results in two graphs (also MSTs)
- Prim (1957) algorithm: start from an empty set and include a first node in V
 - compute dissimilarities between nodes V_{in} and V_{out}
 - select the node from Vout with minimum dissimilarity
 - iterate until all included
- unique under certain conditions

Opening	SKATER	Extensions	Other applications
		0000000	
Minimum span	ning tree		

• Y with p.d.f $p(y/\theta, \phi)$, location (θ) and ϕ (scale)

• $pI_{\theta,\phi}(\theta,\phi/X,y) = \frac{L(\theta,\phi/X,y)}{\max_{\theta',\phi'}[L(\theta',\phi'/X,y)]}$

• similarly for
$$y : pl_y(y/X, \theta, \phi) = \frac{p(y/X, \theta, \phi)}{\max_{y' \in \Re} [p(y/X, \theta, \phi)]}$$

- distance measures
 - common scale: $d_{ij} = log\{[p(y_i/X_i, \theta, \phi)p(y_j/X_j, \theta, \phi)]^{-1}\}$
 - more general: $d_{ij} = log\{[pl_y(y_i/X_i, \theta, \phi)pl_y(y_j/X_j, \theta, \phi)]^{-1}\}$

Opening OO	SKATER 00000000	Extensions	Other applications
Gaussian case			

•
$$y_i \sim N(\mu_i, \sigma^2)$$

• $d(i, j) = log(2\pi\sigma^2) + \frac{1}{2\sigma^2}[(y_i - \mu_i)^2 + (y_j - \mu_j)^2]$
• $\hat{\mu}_i = \hat{\mu}_j = (y_i + y_j)/2$
• $d(i, j) = log(2\pi) + (y_i - y_j)^2$

•
$$y_i \sim N(\mu_i, \sigma_i^2)$$
.
• $d(i, j) = log(2\pi\sigma_i^2) + \frac{1}{2\sigma_i^2}[(y_i - \mu_i)^2 + (y_j - \mu_j)^2]$
• $\hat{\mu}_i = \hat{\mu}_j = (y_i + y_j)/2$ and $\hat{\sigma}_i^2 = \hat{\sigma}_j^2 = (y_i - y_j)^2/2$
• $d(i, j) = log(\pi(y_i - y_j)^2)$

•
$$y_i \sim N(0, \sigma_i^2)$$

• $d(i,j) = \frac{1}{2} [log(2\pi\sigma_i^2) + log(2\pi\sigma_j^2)] + \frac{y_i^2}{2\sigma_i^2} + \frac{y_j^2}{2\sigma_j^2}$
• $\hat{\sigma}_i^2 = \hat{\sigma}_j^2 = \hat{\sigma}_{ij}^2 = (y_i^2 + y_j^2)/2$
• $d(i,j) = log(\pi(y_i - y_j)^2) + 1$

Opening	SKATER	Extensions	Other applications
		00000000	
Poisson case			

- Common parameter for mean an variance
- pl_y :

 - to compare y_k with y_i and y_j on different groups
 y_i and y_j on the same group with different offset (e.g.population sizes) λ_i = θ_i × o_i

•
$$y_i \sim Poisson(\lambda_i) p(y_i/\theta_i, o_i) = p(y_i/\lambda_i) = \lambda_i^{y_i} e^{-\lambda_i} / \prod y_i$$

•
$$max_{y'}{p(y'/\lambda_i)} = max_{y'}{\lambda_i^{y'}e^{-\lambda_i}/(y'!)}$$

• 0 for $\lambda_i < 0.5$ and $\approx \lambda_i - 0.5$ for $\lambda_i \ge 0.5$

Opening	SKATER	Extensions	Other applications
		00000000	
Partitioning the MST			

- hierarquical division of MST (groups)
- For each edge k:
 - remove the edge
 - compute homogeneity (H_g) for the groups (e.g. $H_g = \sum_i \sum_l (y_{il} \bar{y}_l)^2$)
 - remove edge minimizing $\sum_g H_g$
 - iterate
- objective function: $H_g (H_{g1} + H_{g2})$
- stopping criteria: number of groups, minimum number within groups, reduction of $\sum_g H_g$, etc
- efficient algorithm (Assunção et. al. 2006)

Opening	SKATER	Extensions	Other applications
		0000000	
Alternative Home	ogeneity measures		

- likelihood based
- for group *i*: $H_i = -\sum_j log(p(y_j | \hat{\theta}_i, \hat{\phi}_i)))$,
- for K groups: $\sum_{i=1}^{k} H_i$
- "deviance": $D_k = H_k H_{k-1}$
- $D_k \sim \chi_p^2$: stopping criteria

Opening	SKATER	Extensions	Other applications
OO	00000000		●○
Poins process			

Opening	SKATER	Extensions	Other applications
OO	00000000	00000000	
R code			

```
require(spdep); require(spatstat); data(japanesepines)
del = deldir(japanesepines, rw=c(0,1,0,1))
d.area = data.frame(del$summary)$dir.area
nb.del = tapply(c(del$dirs[,5], del$dirs[,6]), c(del$dirs[,6], del$dirs[,5]), as.integer)
class(nb.del) j- "nb"
costs.a = nbcosts(nb.del, d.area)
nbw.a = nb2listw(nb.del, costs.a, style="B")
mst.a = mstree(nbw.a)
ldnorm = function(x, id) -sum(dnorm(x[id], mean(x[id]), sd(d.area), log=TRUE))
sk5.a = skater(mst.a[,1:2], d.area, 4, method=ldnorm)
```