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Clustering and regionalization

@ Clustering:
@ nindividuals with their “atributes” — k “homogeneous” groups

@ group composition (possibly with minimal number)
@ how many groups?
@ Regionalization:
@ classification procedure
@ applied to spatial objects (with an areal representation)
@ groups them into homogeneous contiguous regions
@ Why?
9 detecting heterogeneous sub-regions (“step”)

@ exploratory
9 administrative/management purposes
)

@ reduced number of possible groups
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Approaches

© non-spatial clustering + neighbouring preserving classification

@ 2 steps
@ possibly too many groups

@ clustering including (weighted) spatial covariates

@ SAGE (spatial analysis GIS environment)
@ objective function involves homogeneity, compactness and equality

@ explicit use of neighbouring structure in optimization
@ implicit constraints
9 AZP (automatic zonning procedure)
@ computationally expensive
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The SKATER approach

@ algorithm of type (3)

@ graph to introduce/represent neighbourhood

9 vertices (units) + edges
@ “cost” of edges: dissimilarities

@ heuristics for prunning
@ minimal 1 group graph (MST: minimal spanning tree)
@ regionalization — optimal graph partitioning
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An “R”-ish template for the analysis

© spatial packages: sp, spdep, ...

@ Read attributes and the map
read.table() and readShapePoly ()

@ standardize data (scale())

@ neighbourhood list (poly2nb())

@ costs for edges (dissimilarities) (nbcosts())

@ weighted neighbourhood structure (nb2listw())
@ minimum spanning tree (mstree())

@ partition (skater())
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Yet another example
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Extending SKATER

@ costs of edges

@ euclidean, mahalanobis, ...
<>

@ measures of homogeneity

9 distance to the mean(s)
<>

@ applications

9 areal data
<>



Extensions
[ ]

Extending SKATER

@ costs of edges

9 euclidean, mahalanobis, ...
@ density based measurements (non-Gaussian data)

@ measures of homogeneity

9 distance to the mean(s)
<>

@ applications

9 areal data
<>
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Extending SKATER

@ costs of edges
9 euclidean, mahalanobis, ...
@ density based measurements (non-Gaussian data)

@ measures of homogeneity

9 distance to the mean(s)
@ likelihood based measures, criteria for number of groups

@ applications

9 areal data
<>
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Extending SKATER

@ costs of edges
9 euclidean, mahalanobis, ...
@ density based measurements (non-Gaussian data)

@ measures of homogeneity

9 distance to the mean(s)
@ likelihood based measures, criteria for number of groups

@ applications

9 areal data
@ point processes, geostatistical data, time series, independent observations
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Minimum spanning tree
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connected graph (nodes v, edges e, attributes y) path between any pair (v;, v;)
tree (no circuit)

spanning tree nnodes V = (vy,...,v,) and n— 1 edges E = (ey,..., €n_1)
costs for each edge (dissimilarities) d(v;, v;) = d(ex) = X.,(¥i — ¥j1)?

minimum spanning tree (MST): set {e, ... €,-1} minimizing Zﬁ;ll d(ex)

removal of an edge results in two graphs (also MSTs)

Prim (1957) algorithm: start from an empty set and include a first node in V

@ compute dissimilarities between nodes Vj, and Vo
@ select the node from Vo with minimum dissimilarity
9 iterate until all included

unique under certain conditions
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Minimum spanning tree

@ Y with p.d.f p(y/9, ¢), location (6) and ¢ (scale)

_ L(0.0/Xy)
) plg,gb(e, (P/X/ )/) - mang/(p/ [L(&7 9" /X V)]

maxyr e [P(y/X,0,]

@ similarly for y : pl,(y/X,0,¢) =
@ distance measures
@ common scale: d; = log{[p(yi/Xi, 6, $)p(yj/ X}, 6, )17}
» more general: d; = log{[ply (yi/Xi, 6, )Py (y;/ X}, 6,0)] "}
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Gaussian case

@ yi ~ N(ui, 0%)
@ d(i,j) = log(2ro®) + 555 [(yi = i) + (¥ = )]
9 fi=f;=(yi+Y)/2
o d(i,j) = log(2m) + (vi - ¥j)?

@ yi ~ N(uj, d?).
@ d(i,j) = log(2na?) + %[(yl'—#f)z v = )%
° fi=pi= (y,+y,)/2andcr =67 = (vi-¥)?/2
@ d(i,j) = log(n(yi - ¥;)?)

® yi ~ N(0,0?)
2
o d(i,j) = 3[log(2m0? )+Iog(2nc72)]+ 27 + 5
9 8% = 12_0 = (y? +y)/2
= log(n(y; - y;)? )+1

2(T
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Poisson case

@ Common parameter for mean an variance

@ ply:
@ to compare y, with y; and y; on different groups
9 y; and y; on the same group with different offset (e.g.population sizes) A; = 0; X o;

@ y; ~ Poisson(A;) p(vi/6i,0;) = p(yi/Ai) = Ale™/ T1y;
@ max, {p(y’/Ai)} = maxy/{/\?"e”i/(y’!)

@ OforA; <05and~ A;—05forA; >0.5
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Partitioning the MST

@ hierarquical division of MST (groups)

@ For each edge k:

@ remove the edge

@ compute homogeneity (Hg) for the groups (e.g. Hg = Y.; ¥y(vi — %1)?)
@ remove edge minimizing )., Hg

9 iterate

@ objective function: Hy — (Hg1 + Hgz)

@ stopping criteria: number of groups, minimum number within groups, reduction of
Z,g Hy, etc

@ efficient algorithm (Assuncéo et. al. 2006)
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Alternative Homogeneity measures

@ likelihood based

o forgroup i: Hi = -} ; Iog(p(y,»lé,»,q?,-)),
@ for K groups: YX, H;

@ “deviance”: Dy = Hx — Hi_1

@ Dy ~ x5: stopping criteria
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Poins proccess
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require(spdep); require(spatstat); data(japanesepines)

del = deldir(japanesepines, rw=c(0,1,0,1))

d.area = data.frame(del$summary)$dir.area

nb.del = tapply(c(del$dirs[,5], del$dirs[,6]), c(del$dirs[,6], del$dirs[,5]), as.integer)
class(nb.del) j- "nb”

costs.a = nbcosts(nb.del, d.area)

nbw.a = nb2listw(nb.del, costs.a, style="B")

mst.a = mstree(nbw.a)

I[dnorm = function(x, id) -sum(dnorm(x[id], mean(x[id]), sd(d.area), log=TRUE))
sk5.a = skater(mst.a[,1:2], d.area, 4, method=ldnorm)
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