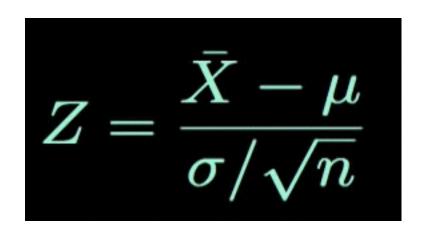
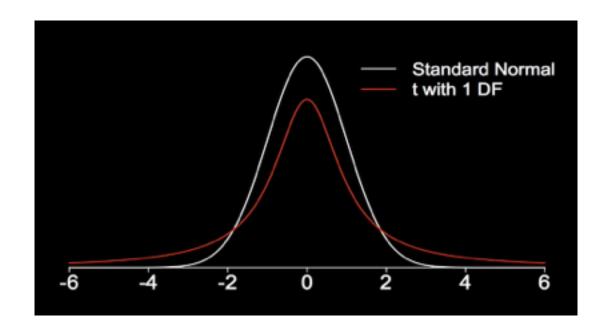


TESTE T PARA POPULAÇÕES INDEPENDENTES

ISABELA GOMES DA SILVA ISABELLA NAOMI FURUIE MARIA JÚLIA JORGE MAURO

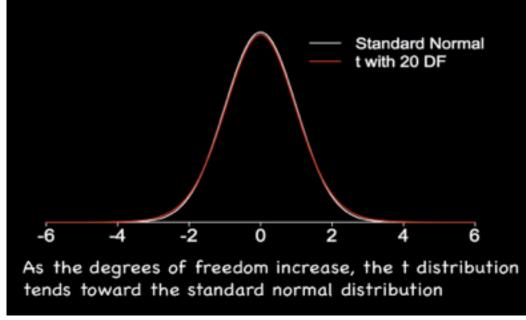

Distribuição para uma amostra n retirada de uma população com distribuição nomal padrão.

Na teoria utilizamos esta fórmula para, por exemplo, calcular o IC, porém na prática não sabemos o desvio padrão da população (σ).


O - é um parâmetro, o desvio padrão da população total e tipicamente não temos esse valor.

s - desvio padrão da amostra

Quando a amostra é proveniente de uma população de distribuição normal padrão, ela terá distribuição t com n-1 graus de liberdade

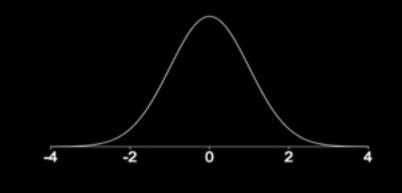


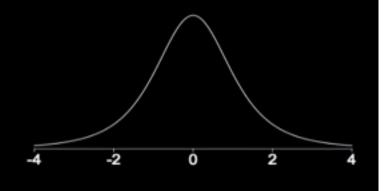
$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$

Quanto maior o grau de liberdade, mais semelhante a curva será à distribuição normal padrão

A fórmula é parecida com a Normal Z, porém estamos usando uma estatística (s) para avaliar um parâmetro. A variância nesse caso é maior.

Constructing a 95% confidence interval


(for the population mean)


If σ is known:

$$\bar{X} \pm 1.96 \times \frac{\sigma}{\sqrt{n}}$$

If σ is not known:

$$\bar{X} \pm ? \times \frac{s}{\sqrt{n}}$$

$$Z_{0,025} = 1,96$$

 $t_{.025}$ values (for 95% confidence intervals)

n	$d\!f$	$t_{.025}$
6	5	2.571
11	10	2.228
31	30	2.042
51	50	2.009
101	100	1.984
∞	∞	1.960

COMPARANDO A MÉDIA DE DOIS GRUPOS INDEPENDENTES

- 1. Definir a hipótese
- 2. Definir alfa
- 3. Calcular grau de liberdade
- 4. Definir a regra da decisão
- 5. Calcular o teste estatístico
- 6. Definir os resultados
- 7. Conclusão

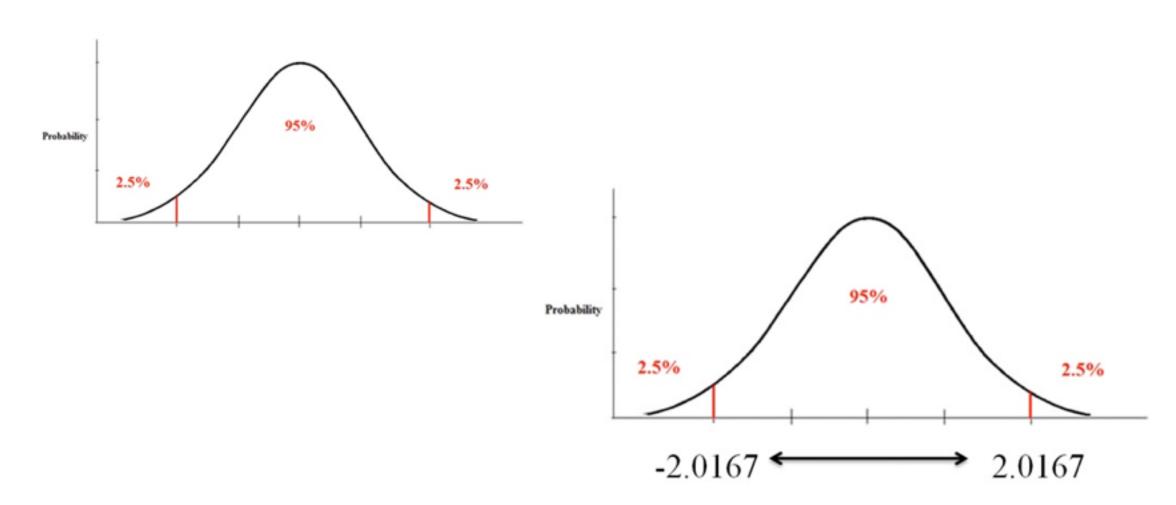
Um professor de estatística quer comparar os resultados da prova de duas de suas turmas para ver se o desempenho das duas foi diferente. Turma A tem 25 alunos com uma nota média de 70 e desvio padrão de 15. Turma B tem 20 alunos com uma nota média de 74 e desvio padrão de 25. Utilizando alfa = 0,05, essas duas turmas tiveram desempenhos diferentes nessa prova?

1 - Definir a Hipótese

$$H_0$$
; $\mu_{classA} = \mu_{classB}$

$$H_1$$
; $\mu_{classA} \neq \mu_{classB}$

2- Definir o alfa


$$\alpha = 0.05$$

3- Calcular Grau de Liberdade

$$df = (n_1 - 1) + (n_2 - 1)$$

$$df = (25 - 1) + (20 - 1) = 43$$

4- Definir a regra de decisão

> t Table

df			Critical Value	ıs		df		0	Critical Values		
1-tailed	0.1	0.05	0.025	0.01	0.005	1-tailed	0.1	0.05	0.025	0.01	0.005
2-tailed	0.2	0.1	0.05	0.02	0.01	2-tailed	0.2	0.1	0.05	0.02	0.01
1	3.0777	6.3138	12.7062	31.8205	63.6567	32	1.3086	1.6939	2.0069	2.4487	2.7385
2	1.8856	2.9200	4.3027	6.9646	9.9248	33	1.3077	1.6924	2.0345	2.4448	2.7333
3	1.6377	2.3534	3.1824	4.5407	5.8409	34	1.3070	1.6909	2.0322	2.4411	2.7284
4	1.5332	2.1318	2.7764	3.7469	4.6041	35	1.3062	1.6896	2.0001	2.4377	2.7238
5	1.4759	2.0150	2.5706	3.3649	4.0321	36	1.3055	1.6883	2.0281	2.4345	2.7195
6	1.4398	1.9432	2.4469	3.1427	3.7074	37	1.3049	1.6871	2.0262	2.4314	2.7154
7	1.4149	1.8946	2.3646	2.9980	3.4995	38	1.3042	1.6860	2.0244	2.4286	2.7116
8	1.3968	1.8595	2.3060	2.8965	3.3554	39	1.3036	1.6849	2.0227	2.4258	2.7079
9	1.3830	1.8331	2.2622	2.8214	3.2498	40	1.3031	1.6839	2.0211	2.4233	2.7045
10	1.3722	1.8125	2.2281	2.7638	3.1693	41	1.3025	1.6829	2.0195	2.4208	2.7012
11	1.3634	1.7959	2.2010	2.7181	3.1058	42	1.3020	1.6820	2.0181	2.4185	2.6981
12	1.3562	1.7823	2.1788	2.6810	3.0545	43	1.2010	1.0011	2.0167	2.4163	2.6951
13	1.3502	1.7709	2.1604	2.6503	3.0123	44	1.3011	1.6802	2.0154	2.4141	2.6923
14	1,3450	1.7613	2.1448	2.6245	2.9768	45	1.3006	1.6794	2.0141	2.4121	2.6896
15	1.3406	1.7531	2.1314	2.6025	2.9467	46	1.3002	1.6787	2.0129	2.4102	2.6870
16	1.3368	1.7459	2.1199	2.5835	2.9208	47	1.2998	1.6779	2.0117	2.4083	2.6846
17	1.3334	1.7396	2.1098	2.5669	2.8982	48	1.2994	1.6772	2.0106	2.4066	2.6822
18	1.3304	1.7341	2.1009	2.5524	2.8784	49	1.2991	1.6766	2.0096	2.4049	2.6800
19	1.3277	1.7291	2.0930	2.5395	2.8609	50	1.2987	1.6759	2.0086	2.4033	2.6778
20	1.3253	1.7247	2.0860	2.5280	2.8453	60	1.2958	1.6706	2.0003	2.3901	2.6603
21	1.3232	1.7207	2.0796	2.5176	2.8314	70	1.2938	1.6669	1.9944	2.3808	2.6479
22	1.3212	1.7171	2.0739	2.5083	2.8188	80	1.2922	1.6641	1.9901	2.3739	2.6387
23	1,3195	1.7139	2.0687	2.4999	2.8073	90	1.2910	1.6620	1.9867	2.3685	2.6316
24	1.3178	1.7109	2.0639	2.4922	2.7969	100	1.2901	1.6602	1.9840	2.3642	2.6259
25	1.3163	1.7081	2.0595	2.4851	2.7874	110	1.2893	1.6588	1.9818	2.3607	2.6213
26	1.3150	1.7056	2.0555	2.4786	2.7787	120	1.2886	1.6577	1.9799	2.3578	2.6174
27	1.3137	1.7033	2.0518	2.4727	2.7707	130	1.2881	1.6567	1.9784	2.3554	2.6142
28	1.3125	1.7011	2.0484	2.4671	2.7633	140	1.2876	1.6558	1.9771	2.3533	2.6114
29	1.3114	1.6991	2.0452	2.4620	2.7564	150	1.2872	1.6551	1.9759	2.3515	2.6090
30	1,3104	1.6973	2.0423	2.4573	2.7500	œ	1.2816	1.6449	1.9600	2.3263	2.5758
31	1.3095	1.6955	2.0395	2.4528	2.7440						

5- Teste Estatístico

$$t = \frac{(\overline{x_1} - \overline{x_2})}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$$

$$s_p^2 = \frac{SS_1 + SS_2}{df_1 + df_2}$$

$$t = \frac{(\overline{x_1} - \overline{x_2})}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$$

$$s_p^2 = \frac{SS_1 + SS_2}{df_1 + df_2}$$

$$s_p^2 = \frac{SS_1 + SS_2}{df_2 + df_2}$$

$$s_p^2 = \frac{5400 + 11875}{24 + 19} = 401.74$$

5- Teste Estatístico

$$t = \frac{(70 - 74)}{\sqrt{\frac{401.74}{25} + \frac{401.74}{20}}} = \frac{-4}{\sqrt{36.16}} = -0.67$$

6- Resultados

t= -0.67

7- Conclusão

Como definimos a regra de decisão como: rejeitar a hipótese nula se te for maior que 2.0167 ou menor que -2.0167, e -0.67 não preenche esses critérios, não podemos rejeitar a hipótese nula de que a média da turma A é igual à da turma B.

Não há diferença estatisticamente significante entre as médias da turma A e turma B, t=-0.67, p>0,05

Dois grupos de ratos foram alimentados com dietas com alto e baixo conteúdo de proteínas. O quadro abaixo fornece o ganho de peso destes ratos entre os dias 28 e 84 de vida:

Conteúdo de proteína	Ganho de peso
Alto	123 134 146 104 119 124 161 107 83 113 129 97
Baixo	70 118 101 85 107 132 94

Um grupo de pesquisadores deseja testar a hipótese de que o alto conteúdo de proteína leva a maior aumento de peso

PERGUNTAS:

A) ao nível de significância de 1%, há evidência estatística de que a dieta com alto conteúdo de proteína aumenta o ganho de peso?

Em outras palavras...

Podemos rejeitar a hipótese Ho: média do peso 1 = média do peso 2?

PASSO 1 – calcular o valor de T

H0: $\mu 1 = \mu 2$

Ha: $\mu 1 > \mu 2$

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

$$\frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}| > t_{n_1+n_2-2;1-\frac{\alpha}{2}}$$

PASSO 1

$$\overline{x_1} = 120$$
 $s = 21,39 \,\text{n1} = 12$ $x_2 = 101$ $s = 20,62 \,\text{n2} = 7$

$$T_{obs} = \frac{120 - 101}{21,12\sqrt{\frac{1}{12} + \frac{1}{7}}} = 1,89$$

$$T_{obs} = \frac{120 - 101}{21{,}12\sqrt{\frac{1}{12} + \frac{1}{7}}} = 1{,}89 \qquad S_{comb} = \sqrt{\frac{(12 - 1)(21{,}29)^2 + (7 - 1)(20{,}62)^2}{12 + 7 - 2}} = 21{,}12$$

PASSO 2 – achar o valor de t para n1+n2-2; 1-alfa/2 na tabela de t de student, para o nível de significancia de 1%

N1+n2-2= 12+7-2= 17

T=2,567 (aproximadamente 2,57)

PASSO 3 – CONCLUSÃO

T<2,57

Portanto, não podemos descartar a hipótese de que os pesos médios entre os grupos de ratos se equivalem.

				p(
gl	0,600	0,750	0,900	0		0,990	0,995	0,9995
1	0,325	1,000	3,078	6,024	12,700	31,821	63,657	636,619
2	0,289	0,816	1,886	2,920	4,303	6,965	9,925	31,598
3	0,277	0,765	1,638	2,353	3,182	4,541	5,841	12,924
4	0,271	0,741	1,533	2,132	2,776	3,747	4,604	8,610
5	0,267	0,727	1,476	2,015	2,571	3,365	4,032	6,869
6	0,265	0,718	1,440	1,943	2,447	3,143	3,707	5,959
7	0,263	0,711	1,415	1,895	2,365	2,998	3,499	5,408
8	0,262	0,706	1,397	1,860	2,306	2,896	3,355	5,041
9	0,261	0,703	1,383	1,833	2,262	2,821	3,250	4,781
10	0,260	0,700	1,372	1,812	2,228	2,764	3,169	4,587
11	0,260	0,697	1,363	1,796	2,201	2,718	3,106	4,437
12	0,259	0,695	1,356	1,782	2,179	2,681	3,055	4,318
13	0,259	0,694	1,350	1,771	2,160	2,650	3,012	4,221
14	0,258	0,692	1,345	1,761	2,145	2,624	2,977	4,140
15	0,258	0,691	1,341	1,753	2,131	2,602	2,947	4,073
16	0,258	0,690	1,337	1.746	2.120	2,583	2,921	4,015
17	0,257	0,689	1,333	1	· ·	2,567	2,898	3,965
18	0,257	0,688	1,330	1,/54	2,101	2,552	2,878	3,922
19	0,257	0,688	1,328	1,729	2,093	2,539	2,861	3,883
20	0,257	0,687	1,325	1,725	2,086	2,528	2,845	3,850
21	0,257	0,686	1,323	1,721	2,080	2,518	2,831	3,819
22	0,256	0,686	1,321	1,717	2,074	2,508	2,819	3,792
23	0,256	0,685	1,319	1,714	2,069	2,500	2,807	3,768
24	0,256	0,685	1,318	1,711	2,064	2,492	2,797	3,745
25	0,256	0,684	1,316	1,708	2,060	2,485	2,787	3,725
26	0,256	0,684	1,315	1,706	2,056	2,479	2,779	3,707
27	0,256	0,684	1,314	1,703	2,052	2,473	2,771	3,689
28	0,256	0,683	1,313	1,701	2,048	2,467	2,763	3,674
29	0,256	0,683	1,311	1,699	2,045	2,462	2,756	3,660
30	0,256	0,683	1,310	1,697	2,042	2,457	2,750	3,646
40	0,255	0,681	1,303	1,684	2,021	2,423	2,704	3,551
60	0,254	0,679	1,296	1,671	2,000	2,390	2,660	3,460
120	0,254	0,677	1,289	1,658	1,980	2,358	2,617	3,373
00	0,253	0,674	1,282	1,645	1,960	2,326	2,576	3,291

Calculando o valor de P

Na linha 17 da tabela, 1,89 fica entre 1,74 e 2,11 (P entre 0,05 e 0,025%)

Se P<alfa = descarta a hipótese Ho

Como o valor de P fica num intervalo maior que 0,01 > não se descarta a hipótese Ho

				$p(t_{\underline{v}} \leq T)$				
gl	0,600	0,750	0,900	0,950	0,975	0,990	0,995	0,9995
1	0,325	1,000	3,078	6,314	12,706	31,821	63,657	636,619
2	0,289	0,816	1,886	2,920	4,303	6,965	9,925	31,598
3	0,277	0,765	1,638	2,353	3,182	4,541	5,841	12,924
4	0,271	0,741	1,533	2,132	2,776	3,747	4,604	8,610
5	0,267	0,727	1,476	2,015	2,571	3,365	4,032	6,869
6	0,265	0,718	1,440	1,943	2,447	3,143	3,707	5,959
7	0,263	0,711	1,415	1,895	2,365	2,998	3,499	5,408
8	0,262	0,706	1,397	1,860	2,306	2,896	3,355	5,041
9	0,261	0,703	1,383	1,833	2,262	2,821	3,250	4,781
10	0,260	0,700	1,372	1,812	2,228	2,764	3,169	4,587
11	0,260	0,697	1,363	1,796	2,201	2,718	3,106	4,437
12	0,259	0,695	1,356	1,782	2,179	2,681	3,055	4,318
13	0,259	0,694	1,350	1,771	2,160	2,650	3,012	4,221
14	0,258	0,692	1,345	1,761	2,145	2,624	2,977	4,140
15	0,258	0,691	1,341	1,753	2,131	2,602	2,947	4,073
16	0,258	0,690	1,337	1,746	2,120	2,583	2,921	4,015
17	0,257	0,689	1,333	1,740	2,110	2,567	2,898	3,965
18	0,257	0,688	1,330	1,734	2,101	2,552	2,878	3,922
19	0,257	0,688	1,328	1,729	2,093	2,539	2,861	3,883
20	0,257	0,687	1,325	1,725	2,086	2,528	2,845	3,850
21	0,257	0,686	1,323	1,721	2,080	2,518	2,831	3,819
22	0,256	0,686	1,321	1,717	2,074	2,508	2,819	3,792
23	0,256	0,685	1,319	1,714	2,069	2,500	2,807	3,768
24	0,256	0,685	1,318	1,711	2,064	2,492	2,797	3,745
25	0,256	0,684	1,316	1,708	2,060	2,485	2,787	3,725
26	0,256	0,684	1,315	1,706	2,056	2,479	2,779	3,707
27	0,256	0,684	1,314	1,703	2,052	2,473	2,771	3,689
28	0,256	0,683	1,313	1,701	2,048	2,467	2,763	3,674
29	0,256	0,683	1,311	1,699	2,045	2,462	2,756	3,660
30	0,256	0,683	1,310	1,697	2,042	2,457	2,750	3,646
40	0,255	0,681	1,303	1,684	2,021	2,423	2,704	3,551
60	0,254	0,679	1,296	1,671	2,000	2,390	2,660	3,460
120	0,254	0,677	1,289	1,658	1,980	2,358	2,617	3,373
00	0,253	0,674	1,282	1,645	1,960	2,326	2,576	3,291

- ensaio clínico aleatorizado, duplo-cego
- Tianeptina: antidepressivo tricíclico
- administrar a droga a dois grupos de pacientes -> quantificar a depressão através da escala de Montgomery-Asberg (MADRS)

Grupo					Escores			
Placebo	6	33	21	26	10	29	33	29
	37	15	2	21	7	26	13	
Tianeptina	10	8	17	4	17	14	9	4
	21	3	7	10	29	13	14	2

$$n_1 = 15$$
 $\bar{x}_1 = 20,53$ $s_1 = 11,09$ $n_2 = 16$ $\bar{x}_2 = 11,37$ $s_2 = 7,26$

OBJETIVO: Testar se uma variável difere entre dois grupos independentes de sujeitos

$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 \neq \mu_2$

$$n_1 = 15$$
 $\bar{x}_1 = 20,53$ $s_1 = 11,09$
 $n_2 = 16$ $\bar{x}_2 = 11,37$ $s_2 = 7,26$

$$s_p = \sqrt{rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}}$$

$$s_p = \sqrt{\frac{14(11,09)^2 + 15(7,26)^2}{15 + 16 - 2}} = 9.81$$
grupos

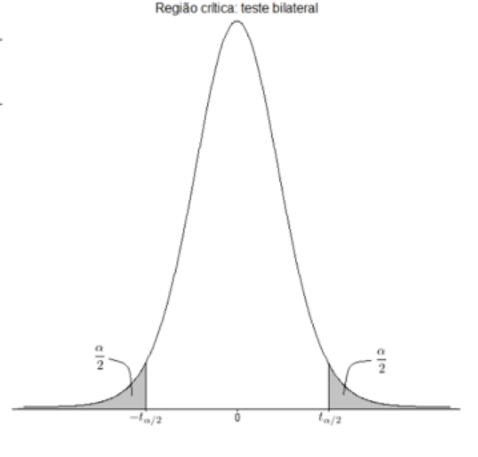
Como a suposição é que as variâncias dos dois grupos são iguais, podemos estimar σ como uma média ponderada, com pesos proporcionais aos tamanhos dos grupos

$$T = |rac{ar{x}_1 - ar{x}_2}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}}| = |rac{20,53 - 11,37}{9,31 \sqrt{rac{1}{15} + rac{1}{16}}}| = 2,74$$

t crítico
$$t_{n_1+n_2-2;1-\frac{\alpha}{2}}$$

- percentil de ordem 1 $\alpha/2$ da distribuição t com n1 + n2
 - 2 graus de liberdade

$$n_1 = 15$$
 $\bar{x}_1 = 20,53$ $s_1 = 11,09$ $n_2 = 16$ $\bar{x}_2 = 11,37$ $s_2 = 7,26$


• Graus de liberdade:

$$n1 + n2 - 2 = 15 = 16 - 2 = 29$$

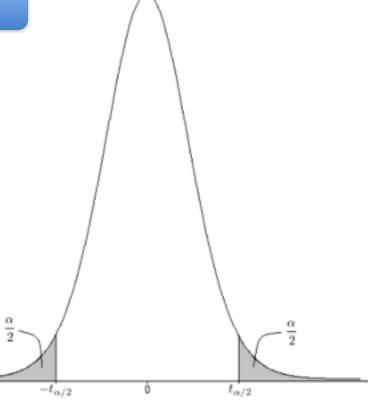
• Percentil:

$$\alpha = 0.05 \rightarrow 1-\alpha/2 = 1-0.05 = 0.975$$

Procurar na tabela o percentil

ABELA COM VAL	ORES DE T			/-(t-u < 2,2381) = 97,5%	A.SOM1
Graus de liberdade (73-1)	P_{90}	P_{gd}	$P_{97,5}$	P_{99}	$P_{99,5}$
1	3,0780	6,3138	12,7060	31,8210	63,6570
2	1,8860	2,9200	4,3027	6,9650	9,9248
3	1,6380	2,3534	3,1825	4,5410	5,8409
4	1,5330	2,1318	2.7764	3,7470	4,6041
5	1,4760	2,0150	2,5706	3,3650	4,0321
6	1,4400	1,9432	2.4469	3,1430	3,7074
7	1,4150	1,8946	2,3646	2,9980	3,4995
8	1,3970	1,8595	2,3060	2,8960	3,3554
9	1,3830	1,8331	2.2622	2.8210	3,2498
10	1,3720	1,8125	2.2281	2,7640	3,1693
11	1,3630	1,7959	2,2010	2,7180	3,1058
12	1,3560	1,7823	2,1788	2,6810	3,0545
13	1,3500	1,7709	2,1604	2,6500	3,0123
14	1,3450	1,7613	2,1448	2,6240	2,9768
15	1,3410	1,7530	2,1315	2,6020	2,9467
16	1,3370	1,7459	2,1190	2,5830	2,9208
17	1,3330	1,7396	2,1098	2,5670	2,8982
18	1,3300	1,7341	2,1009	2,5520	2,8784
19	1,3280	1,7291	2,0930	2,5390	2,8609
20	1,3250	1,7247	2,0860	2,5280	2,8453
21	1,3230	1,7207	2,0796	2,5180	2,8314
22	1,3210	1,7171	2,0739	2,5080	2,8188
23	1,3190	1,7139	2,0687	2,5000	2,8073
24	1,3180	1,7109	2,0639	2,4920	2,7969
25	1,3160	1,7081	2,0595	2,4850	2,7874
26	1,3150	1,7056	2,0555	2,4790	2,7787
27	1,3140	1,7033	2,0518	2,4730	2,7707
28	1,3130	1,7011	2,0484	2,4670	2,7633
29	1,3110	1,6991	2,0452	2,4620	2,7564
30	1,3100	1,6973	2.0423	2,4570	2,7500

$$\frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}| > t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}}$$


t calculado = 2,74

t 29;0,975 = 2, 045

2,74 > 2,045 Rejeição da igualdade entre

os dois grupos no nível de 5%

Região crítica: teste bilateral

OBRIGADA!