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ABSTRACT

In introducing analytic queuing models, textbooks
rarely justify the assumption of the exponential and
the Poisson distributions. This paper demonstrates
how a real-life phenomenon familiar to many students,
namely the occurrences of soccer goals, can drive
the ideas. An Excel worksheet is made available for
further analysis.

Editor’s note: This is a pdf copy of an html document
which resides at
http://ite.pubs.informs.org/Vol3No2/Chu/

1 INTRODUCTION

A standard topic in OR and OM courses is the man-
agement of queues. Analytics developed for tractable
queuing models assume random arrivals according to
a Poisson process with constant rateλ . Equivalently,
inter-arrival times are said to be independent and
to follow an exponential distribution with mean 1 /
λ .The appropriateness of the exponential and Poisson
distributions, their linkage and their properties which
lead to simple analytics, often escape our students as
textbooks rarely provide empirical evidence to justify
them.

Recently, Grossman (1999) expounded on the utility
of process-driven spreadsheet queuing simulation to
help students experience queue dynamics. Inter-arrival
times and service times (Figure 2, in the paper) are
generated according to parameters specified by the
user. To appreciate the practicality of the simulation
exercise, the user must therefore have a feel for the
relevance of the exponential distribution used to gener-
ate the inter-arrival times. This simulation approach,
coupled with some analytical insights, is undoubtedly

fruitful to the pedagogy.

Experience has shown that analytical concepts are
best driven by real-life illustrations. An early ex-
ample of this pedagogical paradigm is Lafleur et al.
(1972) who report a student project which modeled
the number of individuals encountered during the
approximately 30 seconds required to walk through a
dormitory entrance as a Poisson distribution. Another
example is Schmuland (2001), who uses the Poisson
model to explain the phenomena of bursts in shark
attacks and the scoring patterns of ice hockey legend
Wayne Gretzky.

Based on his observation that the Poisson distri-
bution provides a good fit for goals scored in ice
hockey games, Berry (2000) assumes an exponential
distribution for the times between goals to estimate the
strategic time to ”pull the goalie” when a team is down
in a game. This problem was recently re-visited by
Zaman (2002) from a Markov Chain angle.

The link between the Poisson and exponential
distributions can only be illustrated empirically if data
on the sequential timing of the random occurrences
are available. Call centers, for example, often collect
statistics on the number of customer calls received
and not necessarily the times of individual calls. The
same situation may prevail at toll booths where only
the rates of car arrivals may be recorded. Likewise,
Larsen and Marx (1981) have an interesting case study
on the incidence of war outbreaks during the period
1500-1931. But they also do not provide data on when
each war started.

This paper makes available a dataset on the tim-
ing of a competitive phenomenon, namely the scoring
of soccer goals in a sequence of 232 games. Soccer,
with its global following, provides an excellent channel
to sell the Poisson and the exponential distributions
to our students. The paper will demonstrate their
relevance, their inter-relationship, their properties and
their implication towards a better understanding of
the soccer game. The occurrences of touchdowns
in American football or home runs in baseball in
sequential games played by a particular team or player
can also lend themselves to a similar analysis.
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2 THE WORLD CUP DATASET

The World Cup tournament pitching the best national
teams is the ultimate in the soccer world. It is held
every four years. South Korea and Japan co-hosted the
latest tournament between 31 May and 30 June 2002.
That tournament involved 32 countries, which were ini-
tially divided into 8 groups of four. In this first stage,
each country played against each of its 3 group peers.
The top 2 countries within each group then advanced
to a knockout second stage. Ultimately, Brazil beat
Germany 2-0 in the 64th and final game.

In 1998, the same tournament format was used in
France. The host country was ultimately crowned as
the champion. However, when Italy and USA respec-
tively hosted the World Cup in 1990 and 1994, only 24
countries were showcased. In these two gatherings, the
respective winners, Germany and Brazil, emerged after
52 games.

Data on all the goal occurrences in these four World
Cup tournaments are available atFifa’s World Cup
website. Previous tournaments are ignored as the web-
site does not provide information on the sequence of
games. As such, they would not help in the illustration
of the exponential distribution.

This paper therefore focuses on the 232 games played
in the 1990-2002 World Cup tournaments. Only the
goals scored in the 90 minutes regulation time are con-
sidered. This leaves out goals scored in extra time or in
penalty shoot-outs. A regular soccer game consists of
two halves scheduled for 45 minutes. However, injury
time is often added at the end of each half to compen-
sate for game stoppages arising from player injuries.
The extent of injury time in each game is unfortu-
nately not available. For consistency in the analysis,
a goal scored in injury time, say at the 92nd minute,
is recorded as occurring at the 90th minute. This is
because until 1998, goals scored in added times were
always recorded at either the 45th or 90th minute. This
may have some effect on the fit of the Poisson and ex-
ponential distributions to the data.

The first game in Italy90 saw Cameroon scoring a sin-
gle goal against Argentina at the 67th minute. In the
second game, Romania scored 2 goals against the then
Soviet Union at the 42nd and 57th minutes. The time to
these goals are respectively 65(= (90−67)+42) and
15 (= 57−42) minutes. Proceeding in the same way,
574 inter-goal times were obtained by the end of the
2002 Final game (game 232). Figure 1 illustrates the
computation of the time between goals.

Figure 1: Illustration of time between goals

3 MOTIVATING THE EXPONENTIAL DIS-
TRIBUTION

3.1 Mean and standard deviation coincide

The suitability of an exponential fit to the 574 inter-
goal time intervals can be demonstrated in many ways.
For example, a special property of the exponential dis-
tribution is that its mean equals its standard deviation.
These two statistics were found to be respectively 36.25
and 36.68 minutes. These compare favorably against
their common theoretical expectation, namely 90/λ or
36.31 minutes whereλ = 575/232 is the mean number

of goals scored per 90-minutes regulation game.

3.2 Chi-square test for the exponential fit

A more thorough validation is to compare the empir-
ical distributions of the times between goals against
an exponential distribution with the estimated mean.
For example, the theoretical probability of observing
an inter-goal time interval between 0 and 10 minutes
is 0.2407(= 1− exp(λ ∗ 10/90)). This implies that
among 574 inter-goal intervals, we would expect about
138 (= 574∗ .2407) to lie between 0 and 10 minutes.
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Inter-goal Actual Empirical Theoretical Expected
Duration (minutes) Probability Probability

0-10 144 0.2504 0.2407 138
10-20 106 0.1843 0.1828 105
20-30 86 0.1496 0.1388 80
30-40 52 0.0904 0.1054 60
40-50 46 0.0800 0.0800 46
50-60 27 0.0470 0.0607 35
60-70 35 0.0626 0.0461 26
70-80 16 0.0278 0.0350 20
80-90 22 0.0383 0.0266 15
90-100 12 0.0209 0.0202 12
100-110 3 0.0052 0.0153 9
110-120 3 0.0052 0.0116 7
120-130 6 0.0104 0.0088 5

130 or more 16 0.0278 0.0279 16
Total 574 1 1 574

Table 1: Time between goals

Figure 2: Time between goals

The actual number of intervals was 144. Table 1 reports
similar calculations for other intervals while Figure 2
provides a graphical comparison.

The exponential fit to the actual distribution of time
between goals can be assessed by a chi-square test.
This returns a p-value of 0.2008 thereby suggesting
that the suitability of the exponential fit to the data can
not be rejected. This interfacing with Statistics is an
effective means to illustrate the link between different
disciplines to the students.

3.3 Memoryless Property

The dataset also allows for a demonstration that the ex-
ponential distribution lacks memory. Mathematically,
it is written as P(T> t + s — T> t) = P(T> s), where
T is the time between consecutive goals. This implies
that if the last goal occurred t minutes ago, then the
chance of observing the next goal beyond the next s
minutes only depends on s and bears no relationship
to t. In other words, the relative chance is a function
of the length of the time interval s irrespective of the
relative location of the origin t.
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Using Table 1 we find, for example, that empirically
P(T > 10) = 1-144/574 = 0.7491 while P(T> 20 — T
> 10) = (574 - 144 - 106) / (574 - 144) = 0.7534 and
likewise, P(T> 30 — T > 20) = 0.7346 etc. The em-
pirical probabilities are again close to their theoretical
value of 0.7593, assuming thatλ = 575/232.

Alternatively, a soccer-centric approach to motivate
the memoryless property of the exponential distribu-
tion is to ask the following, ”Given that the last goal
was scored 20 minutes ago, what is the chance of ob-
serving a goal within the next 10 minutes?” The above
calculations indicate that this probability is about 0.25.

More examples can be developed from Table 1 to illus-
trate that no matter where a new origin is positioned,
the exponential distribution regenerates itself as if the
origin is at time 0. Intuitively, this implies that the rel-
ative variability or the coefficient of variation in both

the conditional and unconditional distributions must
be the same. The exponential distribution satisfies this
requirement since its mean and standard deviation co-
incide in theory.

3.4 Independence of inter-goal times

Finally, another assumption in queuing theory is that
inter-arrival times are independent. To justify this, we
show that the autocorrelation function of the times be-
tween goals does not depart significantly from 0. This
is indeed the case as none of the autocorrelations listed
in Table 2 lie outside a band of plus or minus twice the
standard error i.e. 2/

√
574 or 0.0835.

The first-order or serial correlation can be visualized
via a scatter plot of consecutive inter-goal times, as
depicted in Figure 3.

Lag 1 2 3 4 5 6 7 8 9
Autocorrelation -0.0112 0.0199 -0.0564 0.0063 0.0058 0.0065 -0.0301 0.0249 -0.0387

Table 2: Autocorrelations for time between goals

Figure 3: Serial correlation of time between goals

4 ILLUSTRATING THE POISSON DISTRI-
BUTION

4.1 Mean and Variance coincide

If the times between goals are exponentially dis-
tributed, then the number of goals within a fixed period

should follow a Poisson distribution. The estimated
rate λ is 575/232 or about 2.4784 goals per 90 min-
utes regulation game. The variance of the number of
goals per game is found to be 2.4584. This is in close
conformance to the theoretical result that the mean and
the variance of a Poisson distribution coincide. The

INFORMS Transaction on Education3:2 (62-68) 65 c©INFORMS ISSN: 1532-0545



CHU
Using Soccer Goals to Motivate the Poisson Process

fit of the Poisson distribution can be further assessed
by benchmarking a theoretical frequency distribution
of goals per game against the actual frequencies.

4.2 Chi-square test for Poisson Fit

The expected number of games with x goals is obtained
by multiplying the Poisson probability of x goals by

232, the total number of matches. The results are dis-
played in Table 3. A chi-square test fails to reject the
validity of the Poisson fit (p-value=0.9745).

A visual contrast of the actual distribution of goals
against the Poisson fit is provided in Figure 4.
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#Goals Actual Empirical Theoretical Expected
# Games Probability Probability # Games

0 19 0.0819 0.0839 19
1 49 0.2112 0.2079 48
2 60 0.2586 0.2576 60
3 47 0.2026 0.2128 49
4 32 0.1379 0.1319 31
5 18 0.0776 0.0654 15

6 or more 7 0.0302 0.0406 9
Total 232 1 1 232

Table 3: Actual and theoretical Distribution of goals over 90 minute intervals

Figure 4: Actual and expected distribution of goals
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4.3 Is the Poisson rate constant?

One property of the Poisson process is that the num-
ber of events within alternative time intervals is also
Poisson but with a proportionally adjusted mean. The
validity of this property can be ascertained in Table 4
which contrasts the actual and expected distributions

of goals in different time intervals fixed at 45, 15, 10,
5 and 1 minutes. Generally, the discrepancies between
the actual and expected frequencies are statistically in-
significant. The Poisson property of coincident mean
and variance is also evident for the different time inter-
vals.

Time Intervals (mins)
45 15 10 5 1

#Goals Actual Expected Actual Expected Actual Expected Actual Expected Actual Expected
0 141 134 910 921 1576 1585 3629 3639 20305 20313
1 157 167 397 380 453 437 520 501 575 567
2 100 103 77 79 55 60 26 34
3 48 43 8 11 4 6 1 2
4 16 13
5 2 3

Total 464 1392 2088 4176 20880
Mean 1.2392 1.2392 0.4131 0.4131 0.2754 0.2754 0.1377 0.1377 0.0275 0.0275

Variance 1.2580 1.2392 0.3878 0.4131 0.2639 0.2754 0.1327 0.1377 0.0267 0.0275
p-value

for
chi- 0.88 0.66 0.60 0.22 0.74

square
test of

fit

Table 4: Actual and theoretical Distribution of goals over alternative time intervals. p-values obtained after consol-
idating classes such that their expected count is 5 or more.

Tables 3 and 4 are useful for contrasting empirical and
theoretical probabilities pertaining to the number of
goals. For instance, one can read off the empirical
probability of 2 goals within 10 minutes as 55/2088 or
0.0263. The probability under an ideal Poisson process
would have been 0.0288.

Soccer fans may question the constancy of the rate
of goals production as follows: If a goal has just been
scored, does this alter the rate of goals scored in the
remainder of the game? The empirical evidence points
interestingly to NO. In other words, the rate of goal
production stays constant. Out of the 232 games, there
were 213 with at least one goal scored. The mean time
to the first goal was 33.71 minutes. This translates to
a mean production of 2.7 goals over the 90 minutes
duration of a game. Following the first goal, a total

of 362 goals were scored i.e. at a mean production of
2.7173 goals over 90 minutes. The mean rates of goal
production before and after the first goal do not appear
to be different. In layman term, the result suggests that
after a goal is scored, changes in strategy by the teams
are effectively neutralized. As a result, the total rate of
goal scoring stays constant. Students could be asked to
investigate whether this result still holds after say a 1-1
or a 2-0 score.

4.4 Axioms of the Poisson Process

Table 4 also lends itself to the illustration of the axioms
of the Poisson process, namely

1. P{1 goal in interval (t, t+∆t)} = λ * ∆t + o(∆t)

2. P{0 goal in interval (t , t+∆t)} = 1 - λ * ∆t + o(∆t)
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3. The numbers of goals in non-overlapping time pe-
riods are independent.

As the goal occurrences are recorded in minutes, the
minimal time period that can be studied is 1 minute.
From Table 4, the empirical probability of a goal in a 1
minute time interval is 575/22880, which is the product

of λ =575/232 and∆t=1/90. This compares favorably
with theoretical probability of 0.02716. As there was
no 1-minute interval with 2 or more goals scored, both
the first and second axioms are verified. The autocor-
relation function in Table 5 supports the third axiom
of independence in the number of goals in these 22880
non-overlapping 1-minute time intervals.

Lag 1 2 3 4 5 6 7 8 9
Autocorrelation -0.0122 -0.0086 0.0021 -0.0033 0.0128 -0.0051 0.0003 0.0092 0.0033

Table 5: Autocorrelation for number of goals in 1-minute time intervals (margin of error=0.0138)

5 CONCLUSION

This contribution demonstrates that the Poisson and ex-
ponential distributions can be convincingly illustrated
using an application of interest to many soccer fans
worldwide. Students have an easier time grasping the
concepts because they can see how they arise in a do-
main for which they may have a deep passion. As a
bonus, the findings provide them with some possibly
non-intuitive insights into the game of soccer. It is a
win-win for both educators and students. They are in-
vited to probe the dataset to investigate further prob-
lems of interest to them.
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