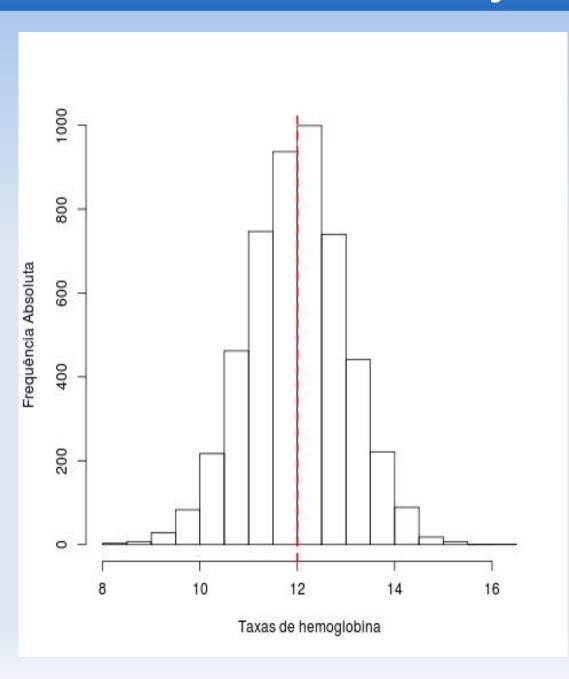
CE001 Bioestatística


INFERÊNCIA ESTATÍSTICA

Silvia Shimakura

Estimação

- Dados amostrais são coletados para que possamos descobrir algo sobre a população.
- Amostras são usadas para estimar quantidades desconhecidas.
 - Ex: pressão sistólica média em jovens normais, prevalência de doenças, efeito de um medicamento
- É importante saber qual é a variação destas estimativas de amostra para amostra.

Taxas de hemoglobina numa população de mulheres jovens e sadias

- Média=12
- Desvio-padrão=1
- Na prática a média e o desvio-padrão são desconhecidos!!!
- Censo é inviável/impossível
- Conclusões são baseadas numa amostra

Perguntas

 Como estimar a taxa de hemoglobina média e o desvio-padrão nesta população?

 O que acontece quando retiramos várias amostras desta população e estimamos a taxa de hemoglobina média e o desvio-padrão nestas amostras?

Amostragem 1

 Uma amostra de tamanho 6 é selecionada da população de taxas de hemoglobina.

```
Amostra 1 11,75 11,26 11,80 12,95 11,62 10,86 Média 1 11,71
```

Amostragem 2

 Selecionando-se outras 6 mulheres...temos um resultado diferente...

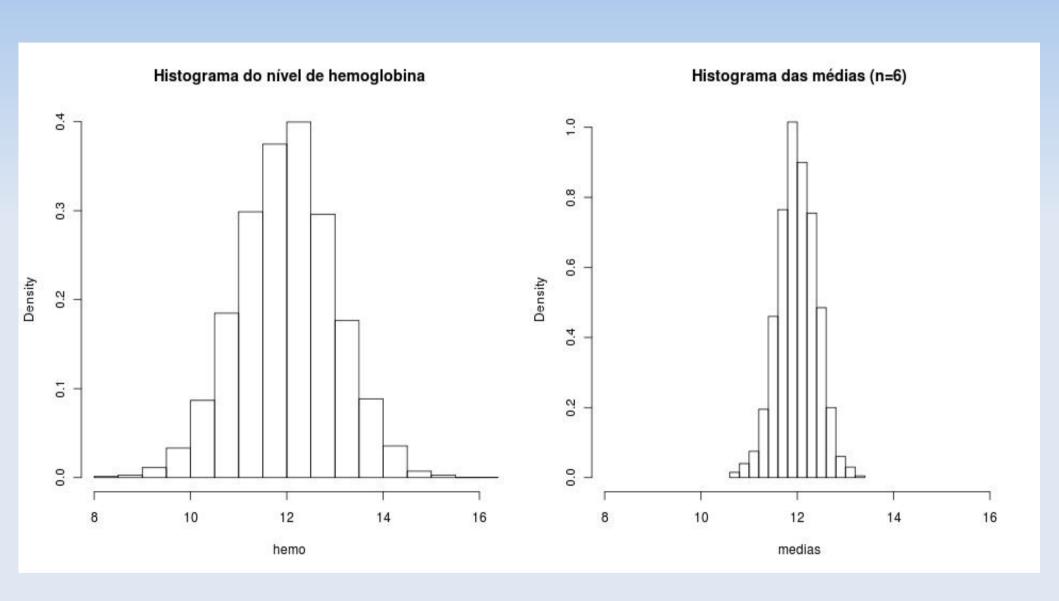
Amostra 1	11,75 11,26 11,80 12,95 11,62 10,86
Média 1	11,71
Amostra 2	11,43 12,60 10,86 10,93 12,24 13,76
Média 2	11,97

 A média amostral varia de uma amostra para outra!

PERGUNTAS

 É possível estimar a média populacional e determinar a precisão da estimativa?

 Existe um comportamento sistemático das médias amostrais?

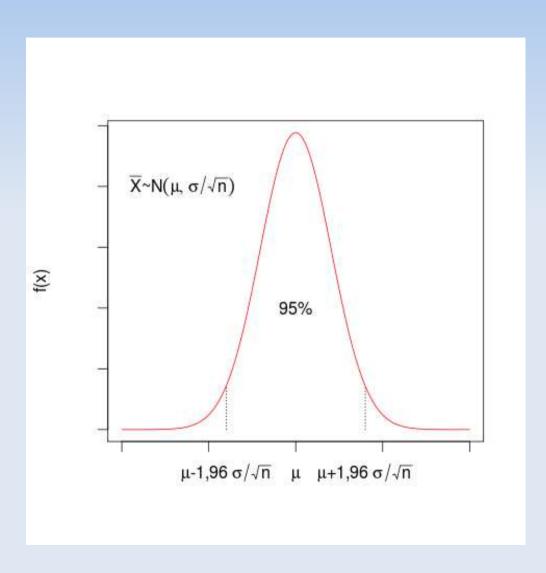

RESPOSTA

- Vamos tentar responder estas perguntas com um exercício de simulação.
- Selecionamos repetidamente 1000 grupos de 6 mulheres e calculamos as médias amostrais.

Amostra	1	2	3	4	5	6	7	8	9	10
	11,78	11,48	10,91	11,35	11,95	10,95	12,32	12,18	12,41	10,58
	11,46	10,71	11,11	10,42	10,14	11,35	12,25	12,20	14,35	12,74
	13,41	13,06	11,31	13,57	12,01	11,83	11,33	11,50	12,29	10,42
	12,33	11,11	12,66	11,47	13,05	9,81	11,50	11,21	12,31	12,59
	11,02	12,69	11,33	11,75	12,07	12,72	12,29	10,05	13,49	12,21
	12,19	11,62	11,42	12,93	13,12	12,84	10,42	13,61	11,12	11,47
Média	12,03	11,78	11,46	11,92	12,06	11,58	11,69	11,79	12,66	11,67

- As médias amostrais (\overline{X}) variam de acordo com alguma distribuição conhecida?

Distribuição população x média



Erro padrão da média amostral

- As 1000 médias podem ser usadas para estimar os parâmetros da distribuição de \bar{X}
- Média das médias amostrais = 11,99≈12
- Desvio-padrão das médias amostrais=0,40 < 1
- Teorema Central do Limite: a distribuição das médias amostrais é Normal com média igual à média da população e desvio-padrão

$$\sigma / \sqrt{n} = 1 / \sqrt{6} = 0.41$$

Consequência do TCL

 95% das médias amostrais estão entre (μ±1,96 σ/√n)

$$P(\mu-1,96\,\sigma/\sqrt{n} \leq \overline{X} \leq \mu+1,96\,\sigma/\sqrt{n}) = 0,95$$

$$\downarrow$$

$$P(\overline{X}-1,96\,\sigma/\sqrt{n} \leq \mu \leq \overline{X}+1,96\,\sigma/\sqrt{n}) = 0,95$$

95% dos intervalos ($\bar{X} \pm 1,96 \sigma/\sqrt{n}$) cobrem μ

Teorema central do limite

Consequentemente,

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

- Usando este resultado, podemos construir intervalos para estimar a média µ
- IC de 95% para a média populacional μ

$$\left(\bar{X}-1,96\frac{\sigma}{\sqrt{n}},\bar{X}+1,96\frac{\sigma}{\sqrt{n}}\right)$$

t-Student

- Na prática σ também não é conhecido!!!
- Então σ é estimado usando s e neste caso

$$\frac{\bar{X}-\mu}{s/\sqrt{n}} \sim t_{n-1}$$

IC de 95% para a média populacional μ

$$\left(\bar{X}-t_{n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{n-1}\frac{S}{\sqrt{n}}\right)$$