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Abstract

New sampling designs for the Autumn Portuguese bottom trawl survey (ptBTS) were investigated
to explore alternative spatial configurations and possible increments on sample size. The currently
used stratified random design and five proposals of systematic based designs were assessed by a
simulation study, adopting a geostatistical approach based on likelihood methods of inference. The
construction of the designs was based on “informal” method to reflect the practical constraints of
bottom trawl surveys. The proposed designs were a regular design with 28 locations (S28), two
regular designs with extra regular added locations with 44 (S44) and 47 (S47) locations, a design
which overlaps the regular and stratified random design currently used with 45 locations (S45) and
an high density regular design with 108 locations (S108), used just as a benchmark. The designs were
assessed by computing bias, relative bias, mean square error and coverages of confidence intervals.
Additionally a variance ratio statistic between each study designs and a corresponding random design
with the same sample size was computed to separate out the effects of different sample sizes and
spatial configurations. The best performance design was S45 with lower variance, higher coverage
for confidence intervals and lower variance ratio. This result can be explained by the fact that this
design combines good parameter estimation properties of the random designs with good prediction
properties of regular designs. In general coverages of confidence intervals where lower than the
nominal 95% level reflecting an underestimation of variance. Another interesting fact were the

lower coverages of confidence intervals computed by sampling statistics for the random designs,
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for increasing spatial correlation and sample size. This result illustrates that in the presence of
spatial correlation, sampling statistics will underestimate variances according to the combined effect

of spatial correlation and sampling density.

Key-words: bottom trawl surveys; geostatistics; simulation; hake; horse mackerel; sampling design.
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1 Introduction

Fisheries surveys are the most important sampling process to estimate fish abundance as they provide
independent information on the number and weight of fish that exist on a specific area and period.
Moreover this information can be disaggregated by several biological parameters like age, length, maturity
status, etc. Like other sampling procedures the quality of the data obtained depends in part on the

sampling design used to estimate the variables of interest.

For the last 20 to 30 years, bottom trawl surveys (BTS) have been carried out in Western European
waters using design-based strategies (Anon., 2002, 2003). However, if one assumes that the number of
fish in a specific location is positively correlated with the number of fish in nearby locations, then a
geostatistical model can be adopted for estimation and prediction and a model-based approach can be
considered to define and assess the sampling design. On the other hand geostatistical principles are
widely accepted and can be regarded as a natural choice for modelling fish abundance (e.g. see Rivoirard

et al., 2000; Anon., 2004).

Thompson (1992) contrasts design-based and model-based approaches considering that under the former
one assumes the values of the variable of interest are fixed and the selection probabilities for inference
are introduced by the design, whereas under the latter one consider the observed properties of interest
as realisations of random variables and carries out inference based on their joint probability distribution.
Hansen et al. (1983) points the key difference between the two strategies by stating that design-based
inference does not need to assume a model for the population, the random selection of the sample provides
the necessary randomisation, while the model-based inference is made on the basis of an assumed model
for the population, and the randomisation supplied by nature is considered sufficient. If the model is
appropriate for the problem at hand there will be an efficiency gain in inference and prediction with
model-based approaches, however a model mis specification can produce inaccurate conclusions. In our
context, with experience accumulated over 20 years of bottom trawls surveys within the study area, there
is a fairly good idea of the characteristics of the population and the risk of assuming an unreasonable

model should be small.

Portuguese bottom trawl surveys (ptBTS) have been carried out on the Portuguese continental waters
since June 1979 on board the R/V Noruega, twice a year in Summer and Autumn. The main objectives
of these surveys are: (i) to estimate indices of abundance and biomass of the most important commer-
cial species; (ii) to describe the spatial distribution of the most important commercial species, (iii) to
collect individual biological parameters as maturity, sex-ratio, weight, food habits, etc. (SESITS, 1999).
The target species are hake (Merluccius merluccius), horse mackerel (Trachurus trachurus), mackerel
(Scomber scombrus), blue whiting (Micromessistius poutassou), megrims (Lepidorhombus boscii and L.

whiffiagonis), monkfish (Lophius budegassa and L. piscatorius) and Norway lobster (Nephrops norvegi-
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cus). A Norwegian Campbell Trawl 1800/96 (NCT) with a codend of 20 mm mesh size, mean vertical

opening of 4.8 m and mean horizontal opening between wings of 15.6 m has been used (Anon., 2002).

Between 1979 and 1980, a stratified random sampling design with 15 strata was adopted. Those strata
were designed using depth and geographical areas. In 1981 the number of strata were revised to 36. In
1989 the sampling design was reviewed and a new stratification was defined using 12 sectors along the
Portuguese continental coast subdivided into 4 depth ranges: 20-100m, 101-200m, 201-500m and 501-750
m, with a total of 48 strata. Due to constraints in the vessel time available the sample size was established
in 97 locations, which were allocated equally splited to obtain 2 locations in each stratum. The locations’
coordinates were selected randomly constraint by the historical records of clear tow positions and other
information about the sea floor, avoiding places where the fishery engine was not able to trawl. This
sampling plan was kept fixed over the years. The tow duration until 2001 was 60 minutes and since
2002 was set in 30 minutes, based on an experiment that showed no significant differences in the mean

abundance and length distribution between the two tow duration.

The main objective of the present work is to investigated proposals of new sampling designs for the
Autumn Portuguese bottom trawl survey (ptBTS). We aimed at explore new spatial configurations and
possible increases on sample size, which could be achieved by e.g. reducing the hauling time (from 1
hour to 1/2 hour). Secondly, we aimed at describe a pragmatic procedure to build sampling designs for
BTS, develop a statistical approach to compare sampling designs with different sample sizes and spa-
tial configurations, and provide generalized results that could be used for other surveys and species. A
simulation study was performed to compare the stratified random design which is currently used against
five proposals of systematic based designs, which we called the study designs. A model based geostatis-
tical approach (Diggle and Ribeiro, 2006) was adopted using likelihood based methods of inference and

conditional simulations to estimate fish abundance on the study area.

Section 2 describes the framework for the simulation study starting with the model specifications followed
by the description of the sampling designs and the setup for the simulation study, conducted in five steps
as described in Section 2.3. The results of the simulation study comparing the study designs are presented

in Section 3 and the findings are discussed in Section 4.

2 Methods

The survey area considered for this work corresponds to the Southwest of the Portuguese Continental
EEZ (between Setubal’s Canyon and S.Vicent Cape). Before any calculation the mercator projection
was transformed into an orthonormal space by converting longitude by the cosine of the mean latitude

(Rivoirard et al., 2000). At Portuguese latitude (38-42°) 1°lat ~ 60nm. The area has ~ 1250nm? and
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the maximum distance between two locations was ~ 81nm(1.35%at).

2.1 Geostatistical framework

The spatial model assumed here is a log-Gaussian geostatistical model. This is a particular case of the
Box-Cox Gaussian transformed class of models discussed in Christensen et al. (2001). The data consists
of the pair of vectors (x,y) with elements (x;,y;) : i = 1, ..., n, where z; denote the coordinates of a spatial
location within a study region A C R? and y; is the measurement of the abundance at this location.
Denoting by z; the logarithm of this measurement, the Gaussian model for the vector of variables Z can

be written as:

Z(x) = S(x) +e (1)
where S(z) is a stationary Gaussian process at locations x, with E[S(z)] = u, Var[S(z)] = 0% and an
isotropic correlation function p(h) = Corr[S(z), S(z')], where h = ||z — 2’| is the Euclidean distance

between the locations x and z'; and the terms € are assumed to be mutually independent and identically
distributed Gau(0,72). For the correlation function p(h) we adopted the exponential function with
algebraic form p(h) = exp{—h/¢} where ¢ is the correlation range parameter such that p(h) ~ 0.05
when h = 3¢. Within the usual geostatistical jargon (Isaaks and Srivastava, 1989) 72 + o2 is the (total)

sill, 02 is the partial sill, 72 is the nugget effect and 3¢ is the practical range.

Hereafter we use the notation [-] for the distribution of the quantity indicated within the brackets. The
adopted model defines [log(Y)] ~ MVGau(ul,X), i.e [Y] is multivariate log-Gaussian with covariance
matrix ¥ parametrised by (02, ¢,72). Parameter estimates can be obtained by maximum likelihood
(Diggle and Ribeiro, 2006). For spatial prediction consider first the prediction target T'(zo) = exp{S(zo)},
i.e. the value of the process in the original measurement scale at a vector of spatial locations xy. Typically
T, defines a grid over the study area. From the properties of the model above the predictive distribution

[T(x)|Y] is log-Gaussian with mean pr and variance o2 given by:

pr exp{E[S(z0)] + 0.5 Var[S(zo)]}
o2, exp{2 E[S(zo)] + Var[S(zo)]}(exp{Var[S(zo)]} — 1)

with

E[S(z0)] = p+3371(Z - 1p)

Cov[S(zo)] = X —XpX7'%,
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where Y is a matrix of covariances between the variables at prediction locations xy and the data
locations x and Var[S(zo)] is given by the diagonal elements of Cov[S(zg)]. In practice, we replace the

model parameters in the expressions above by their maximum likelihood estimates.

Under the model assumptions, [T'|Y] is multivariate log-Gaussian and inferences about prediction means
and variances, or other properties of interest, can be drawn either analytically or, more generally, through
conditional simulations. Prediction targets can be specified as functionals F(S) which are applied to the
conditional simulations. For instance, inferences on the global mean of a particular realisation of the
stochastic process over the area are obtained by defining xzy as a grid covering the study area at which

conditional simulations of [S(z¢)|Y] are taken; the simulated values are then exponentiated and averaged.

2.2 Sampling designs

In general, survey sampling design is about choosing the sample size n and the sample locations =
from which data Y can be used to predict any functional of the process. In the case of the ptBTS some
particularities must be taken into account: (i) the survey targets several species which may have different
statistical and spatial behaviours; (ii) for each species several variables are collected (weight, length,
number, etc.); (iii) the sampling is destructive and replicates can not be obtained; (iv) the variability
of observed fish abundance is typically high, (v) the planned sampling design may be unattained in
practice due to unpredictable commercial fishing activity at the sampling area, bad sea conditions and

other operational constraints.

Optimal designs can be obtained formally, by defining a criteria and finding the set of sampling locations
which minimises some sort of loss function, as e.g. discussed in Diggle and Lophaven (2006). On
the other hand, designs can be defined informally by arbitrarily defining locations which compromises
between statistical principles and operational constraints. Both are valid for geostatistical inference as
described in Section 2.1 provided that the locations x are fixed and stochastically independent of the
observed variable Y. The above characteristics of the ptBTS makes it very complex to set a suitable
criteria to define a loss function to be minimized with relation to the designs. Additionally, costs of
a ship at sea are mainly day based and not haul based and increasing the sample size has to consider
groups of locations instead of individual points. Therefore, our approach was to construct the proposed
designs informally trying to accommodate: (i) historical information about hake and horse mackerel
abundance distribution (Anon., 2002; Jardim, 2004), (ii) geostatistical principles about the estimation
of correlation parameters (e.g. see Isaaks and Srivastava, 1989; Cressie, 1993; Muller, 2001) and (iii)

operational constraints like known trawlable grounds and minimum distance between hauls.

The study designs included the design currently adopted for this survey, named “ACTUAL” with 20

locations, and five systematic based sampling designs. The systematic based designs were defined based
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on two possible increments in the sample size: a ~ 40% increment, which is expected to be achievable in
practice by reducing haul time from 1 hour to 1/2 hour; and a ~ 60% increment, which could be achieved
in practice by adding to the previous increment an allocation of higher sampling density to this area in
order to cover the highest variability of hake recruits historically found within this zone. These designs
are denoted by “S” followed by a number corresponding to the sample size. For the former increment a
regular design named “S28” was proposed and for the latter three designs were proposed: “S45” overlaps
the designs ACTUAL and S28, allowing direct comparison with the previous designs; “S44” and “S47”
are two infill designs (Diggle and Lophaven, 2006) obtained by augmenting S28 with a set of locations
positioned regularly at smaller distances, aiming to better estimate the correlation parameter and, in
particular, the noise-to-signal ratio. S44 was built by defining a single denser sampling zone and S47 by
adding three areas with denser sampling. A sixth design “S108” was defined to be used as reference with

twice the density of S28.

The designs proposed differ in size and spatial configuration and a simple analysis of any statistics would
confound these two effects. This situation motivated the development of a statistical approach to compare
designs with different sample sizes and spatial configurations. We used a ratio of variances of the relevant
estimators between pairs of study designs and random designs with the same sample size, isolating this
way the spatial configuration effect. To carry out this analysis we built six additional designs with the
same sample size as the study designs and with locations randomly chosen within the study area. We
denote these by “R” followed by the number of corresponding locations. Each random design contains
all the locations of the previous one such that the results are comparable without effects of the random

allocation of the sampling locations.

The study and corresponding random designs are shown in Figure 1.

2.3 Simulation study

The simulation study was carried out in five steps as follows.

Step 1 Define a set of study designs. The sampling designs described in Section 2.2 are denoted
by Ag : d =1,...,12, with d = 1,...,6 for the study designs and d = 7,...,12 for the

corresponding random designs, respectively.

Step 2 Define a set of correlation parameters. Based on the analysis of historical data of hake
and horse mackerel spatial distribution and defining 73, = 72/(7% + 02), a set of model pa-
rameters 0, : p = 1,..., P was defined by all combinations of 73,, = {0,0.1,0.2,0.3,0.4,0.5}
and ¢ = {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4}%at. The values of o2 are given by setting

oZ+72=1.
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Step 3 Simulate data. For each parameter set 6, we obtained S=200 simulations Y,s : s =1,..., 5
from [Y] on a regular grid of 8781 locations under the model described in Section 2.1. Each
simulation Y),s approximates a possible realisation of the process within the study area from
which we computed the mean value p,s. For each Y,s we extracted the data Y,4s at the

locations of the sampling designs Ag.

Step 4 Estimate correlation parameters. For each Y4, obtain maximum likelihood estimates

(MLE’s) 6,45 of the model parameter.

Step 5 Simulating from the predictive distribution. A prediction grid xg with 1105 locations
and the estimates épsd were used to obtain C=150 simulations Ypdsc cc=1,...,C of the

conditional distribution [T'(z()|Y] which were averaged to produce }:/pdsc.

2.4 Analysis of simulation results

The simulation study requires maximum likelihood estimates for the model parameters which are obtained
numerically. Therefore a set of summary statistics was computed in order to check the consistency of
the results. We have recorded rates of non-convergence of the minimization algorithm; estimates which
coincided with the limiting values imposed to the minimization algorithm (¢ = 3 and 735, = 0.91);
absence of spatial correlation (¢ = 0) and values of the parameter estimates which are considered

atypical for the problem at hand (¢ > 0.7 and 735, > 0.67).

The 48 parameters set (6,), 12 sampling designs (Ag), 200 data simulations (Ypsq) and 150 conditional
simulations (Ypsdc) produced 17.28 million estimates of abundance which were used to compare the
designs. For each design we have computed the estimator fipsq = C -1 Zc }:/pdsc of mean abundance fi,,
which has variance Var(fipsa) = paa+ Z;L w;w;pij — 237 wipia, where paa is the mean covariance
within the area, estimated by the average covariance between the prediction grid locations (z¢); w are
kriging weights; 5;; is the covariance between a pair of data locations; and p; 4 is the average covariance

between each data locations and the area discretized by the prediction grid z¢ (Isaaks and Srivastava,

1989).

We used bias, relative bias, mean square error (MSE), confidence intervals coverage and ratio of variances
to assess the simulation results, comparing the estimates of the abundance provided by the study designs.
For each design these statistics were averaged over all the simulations (s) and parameter sets (p) or groups
of parameters sets. Considering the difference between the abundance estimates fi,sq and simulated
means f,s, bias was computed by the difference, relative bias was computed by the difference over
the estimate fi,s and MSE was computed by the square of the difference. For each estimate fipqs a

95% confidence interval for py,s, given by Cl(fipsa) = fipsa £ 1.964/Var(fipsq), was constructed and the
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coverage of the confidence intervals § were computed by the proportion of the intervals which contained
the value of p,s over all the simulations. This statistic was introduced to help assessing the quality
of the variance estimates. At least, we called ratio of variances a statistic £ obtained by dividing the
variance Var(fipsq) of each study design by the random design with the same size. Notice that the single
difference among each pair of designs with the same size was the spatial configuration of the locations
and & isolated this effect. Finally we used the results from the six random designs to contrast sampling

design based and geostatistical based estimates.

All the analysis were performed with the R software (R Development Core Team, 2005) and the add-on
packages geoR (Ribeiro Jr. and Diggle, 2001) and RandomFields (Schlather, 2001).

3 Results

Table 1 summarises the analysis of historical data showing parameter estimates for a sequence of years.
This aims to gather information on reasonable values for the model parameters. Notice that units for ¢
are given in degrees and, for the adopted exponential correlation model, the practical range in nautical
miles (r) is given by 3¢ and also included in the table. The values of 73, = 1 estimated in some years
indicates an uncorrelated spatial process and for such cases estimates of ¢ equals to zero. For most of
the cases 74, Was estimated as zero due to the lack of nearby locations in the sampling plan and the
behaviour of the exponential correlation function at short distances. Given that there is no information in
the data about the spatial correlation at distances smaller than the smallest separation distance between
a pair of location, this parameter can not be estimated properly and the results depend on the behaviour

of the correlation function near the origin.

Table 2 present results used for checking the reliability of the parameter estimates once this could have
an impact on the prediction results. The highest rate of lack of convergence was 0.6% for the designs
ACTUAL and R20. Estimates of ¢ equals to the upper limit imposed to the algorithm were, in the
worst case, 0.9% for R28 and R47 and for 735, it was 1.2% for R28. In general there was a slight
worst performance of the random designs but this is irrelevant for the objectives of this study. The
above simulations were not considered for subsequent analysis. Lack or weak spatial correlation given
by ¢ = 0 and/or T35, > 0.67 were found in about 35% of the simulations for the designs with fewer
number of locations, and this rate decreases as the sample size increases, down to below 10% for the
largest designs. For both statistics the study designs showed slightly higher values than the corresponding
random designs. Identification of weakly correlated spatial processes in part of the simulations was indeed
expected to occur given the low values of ¢ (0.05 and 0.1) and high values of 735, (0.5) used in the

simulations. The number of cases that presented ¢ > 0.7 were slightly higher for random designs, with a
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maximum of 2.6% for R44 and R45, but were considered to be within an acceptable range given the high
variability of the estimator. Our overall conclusion was that the estimation procedure and algorithms

produced parameter estimates which can be trusted for subsequent analysis.

Figure 2 shows square bias, variance and MSE obtained from the estimates of correlation parameters ¢
and 712% pr- For 712% gy, the majority of the designs presented similar patterns with a small contribution of
bias to the MSE and increasing values of MSE for higher true parameter values. The designs ACTUAL,
S28 and R20 behaved differently with higher values of bias at low values of 73 that pushed MSE to
higher values. As an effect of the sample sizes, the absolute values of MSE defines 3 groups composed by
designs with 20 and 28 locations, designs with 44, 45 and 47 locations, and designs with 108 locations;
with decreasing values of MSE among them, respectively. MSE increases with the increase of the true
value of ¢ and its absolute value decreases slightly with the increasing sample sizes. All designs presented
a similar pattern with the variance contributing more than bias to the MSE. The study designs showed

a slightly higher relative contribution of the variance to MSE compared with the random designs.

Table 3 shows geostatistical abundance estimates (&) and their bias, relative bias, variance, MSE and
95% confidence interval coverage for both sets of designs. Additionally the table also shows statistics
based on sampling theory obtained for random designs. For subsequent analysis the designs S108 and
R108 were regarded just as benchmarks since they are unrealistic for practical implementation. Bias were
quite small in all situations and can be considered negligible with higher relative bias of 0.014 for S28.
All random designs showed a negative bias whereas all study designs showed a positive one. Variances
estimated by study designs were lower than the ones for the corresponding random designs. For random
designs the variance decays with increasing sample sizes, whereas study designs behaved differently with
S45 presenting the lowest variance followed by S47, S44, S28 and S20. MSE showed the same pattern
since bias were small, supporting our claim that bias were not relevant for the purpose of this work. The
coverages of confidence intervals (§) were lower than the nominal level of 95% excepted for S108 and
R108, reflecting an underestimation of the variance. Considering the designs individually it can be seen
that ACTUAL, S28 and S45 showed a lower underestimation than the equivalent random designs. To
better investigate this Figure 3 presents values of 4 splitted by three levels of correlation (low={0.05, 0.1},
med={0.15, 0.20, 0.25}, high={0.3, 0.35, 0.4}). For geostatistical estimates the coverages ¢ increases
with higher true values of ¢ and larger sample sizes, whereas sampling statistics showed a different
pattern, with maximum values for R44 for low and medium correlation levels and for R28 for high
correlation levels. This behaviour is more noticeable for stronger spatial correlation, in particular, the
largest designs showed lower confidence interval coverage pointing for a more pronounced underestimation

of the variance.

Logarithms of the variance ratios between corresponding “S” and “R” designs are presented in Table 3.
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Without considering S108 for the reasons stated before, the best result was found for S45 (—0.208)
and the worst for S28 (—0.108). This must be balanced by the fact that S45 showed a lower variance
underestimation than R45, with the opposite happening for S44/R44 and S47/R47, so, in reality, the
value of £ is smaller for S45 than for S44 and S47.

4 Discussion

The choice of sampling designs for BT'S is subject to several practical constraints and this has motivated
the adoption of informally defined designs which accommodated several sources of information like fishing
grounds, haul duration, previous knowledge of the spatial distribution of hake and horse mackerel, among
others; which could not be incorporated into a design criteria in an objective way. The fact that this
can generate designs with different sample sizes is a drawback of this approach. However, implementing
a systematic design on an irregular spatial domain is also to provide designs with different sample
sizes, depending on the starting location. On the other hand costs of hauling are relatively small when
compared with the fixed costs associated with a vessel’s working day and increasing sample sizes for a
BTS must consider sets of locations which can be sampled in one working day. For these reasons the
different sample sizes of each design are not just a feature of the adopted approach but also a result of

the BTS particularities.

The confounding effects of sample size and spatial configuration of the proposed designs jeopardized the
comparison of their ability in estimating the abundance. To overcome this limitation a methodology
to compare designs with different sample sizes and spatial configurations was required. To deal with
this issue we’ve introduced a mean abundance variance ratio statistic, between the study designs and a

corresponding simulated random design with the same sample size.

In fisheries science the main objective for the spatial analysis usually lies in predicting the distribution
of the marine resource, aiming, for instance, to define marine protected areas and to compute abundance
indices for stock assessment models (Anon., 2004). For such situations the model parameters are not
the focus of the study, but just a device to better predict the abundance. Muller (2001) points that the
optimality of spatial sampling designs depends on the objectives, showing that ideal designs to estimate
covariance parameters of the stochastic process are not the same to predict the value of the stochastic
process in a specific location and/or to estimate global abundance. We have not compared the study
designs with respect to the estimation of the covariance parameters provided that our main concern was

spatial prediction of abundance.

The choice of the parameter estimation method was a relevant issue in the context of this work. The

absence of a formal criteria to identify the “best” design naturally led to the use of geostatistical simula-



308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

tions to compare the proposed designs. To carry out a simulation study it is useful to have an objective
method capable of producing single estimates of the model parameters. Within traditional geostatistical
methods (Isaaks and Srivastava, 1989; Cressie, 1993; Goovaerts, 1997; Rivoirard et al., 2000) the estima-
tion entangles subjective analyst’s intervention to define some empirical variogram parameters such as
lag interval, lag tolerance and estimator for the empirical variogram. Likelihood based inference produces
estimates of the covariance parameters without a subjective intervention of the data analyst, allowing
for automatization of the estimation process, which is suitable for simulation studies. For the current
work we have also used other methods such as restricted maximum likelihood (REML) and weighted
least squares, but they have produced worse rates of convergence in the simulation study. In particular
the REML presented an high instability with a high frequency of atypical results for ¢. An aspect of
parameter estimation for geostatistical models which is highlighted when using likelihood based methods
is regarded to parameter identification due to over-parametrized or poorly identifiable models (see e.g.
Zhang, 2004). To avoid over parametrization we used a log-transformation and the process was con-
sidered isotropic, avoiding the inclusion of three parameters on the model: the box-cox transformation
parameter (Box and Cox, 1964) and the two anisotropy parameters, angle and ratio. The choice of the log
transformation was supported by the analysis of historical data and does not impact the comparison of
the designs, given that the relative performance of each design will not be affected by the transformation.
A point of concern with the log transformation was the existence of zero values which, in the analysis
of the historical data, were treated as measurement error and included in the analysis with a translation
of the observed values, by adding a small amount to all observations. However, it must be noted this
is not always recommended and, in particular, if the stock is concentrated on small schools that cause
discontinuities on the spatial distribution, these transformations will not produce satisfactory results.
Concerning anisotropy, a complete simulation procedure was carried out considering a fixed anisotropy
angle on the north-south direction and an anisotropy ratio of 1, 1.5 or 2. As expected, the absolute
values obtained were different but the overall relative performance was the same, supporting our decision

to report results only for the isotropic model.

A major motivation for performing a simulation study was the possibility to use a wide range of covariance
parameters that reflect different spatial behaviours. We used two species with different aggregation
patterns, hake and horse mackerel, the first an ubiquitous species and the last a more scholastic species,
to define the range of the parameters for simulation; suggesting results that can be extended for species

with behaviour compatible with the covariance parameters used here.

From a space-time modeling perspective, one of the most interesting analysis for fisheries science is the
fluctuation of the stochastic process over time contrasted with the specific realization in a particular time.
Therefore the comparison with the mean of the realisations (u,s) was considered more relevant then to

the mean of the underlying process (i) for the computation of bias and variability. The results showed
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higher bias for study designs when compared with random designs, but in both cases showing low values
which were considered negligible for the purposes of this work. This conclusion was also supported by

the fact that MSE showed a similar relative behaviour as variance.

Apart from the design S108, which was introduced as a benchmark and not suitable for implementation,
the design that performed better was S45 with lower variance, confidence interval coverage closer to the
nominal level of 95% and lower variance ratio (Table 3). One possible reason is the balance between
good estimation properties given by the random locations and good predictive properties given by the
systematic locations, however the complexity of the BTS objectives makes it impossible to find a full
explanation for this results. A possible indicator of the predictive properties is the average distance
between the designs and the prediction grid locations, which reflects the extrapolation needed to predict
over a grid. We found that S45 had an average of 2.61nm whereas for S47 the value is 2.72nm, explaining
in part the S45 performance.These results are in agreement with Diggle and Lophaven (2006) who showed
that lattice plus closed pairs designs (similar to S45) performed better than lattice plus in-fill designs
(similar to S44 and S47) for accurate prediction of the underlying spatial phenomenon. The combination
of random and systematic designs like S45 is seldom considered in practice and we are not aware of

recommendations of such designs for BTS.

It was interesting to notice that most designs presented a coverage of confidence intervals below the
nominal level of 95% revealing the variances were underestimated. It was not fully clear how to use
such results to correct variance estimation and further investigation is needed on the subject. Care must
be taken when looking at variance ratios since underestimated denominators will produce higher ratios
which can mask the results. This was the case of S45 when comparing to S47 and S44, supporting our

conclusions about S45.

Another result of our work was the assessment of abundance estimates from random designs by sampling
statistics, the most common procedure for fisheries surveys (Anon., 2004), under the presence of spatial
correlation. In such conditions an increase in sample size may not provide a proportional increase in the
quantity of information due to the partial redundancy of information under spatial correlation. Results
obtained for coverages of confidence intervals illustrated this (Table 3 and Figure 3), with smaller cover-
ages for larger sample sizes and higher spatial correlation. In our opinion this is due to an overestimation
of the degrees of freedom that lead to an underestimation of prediction standart errors producing the
smaller coverages. These findings support claims to consider geostatistical methods to estimate fish abun-
dance, such that correlation between locations is explicitly considered in the analysis, and highlighting
the importance of verifying the assumptions behind sampling theory before computing the uncertainty

of abundance estimates.
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Table 1: Exponential covariance function parameters (¢, Tag; ) and the geostatistical range (r) estimated
yearly (1990-2004) for hake and horse mackerel abundance. The values of ¢ are presented in degrees of
latitude and range in nautical miles. The maximum distance between pairs of locations was 63nm.

Hake Horse mackerel

¢(°lat) r(nm) TRey ¢(°lat) r(nm) Thep
1990 0.05 9.1 0.01 0.42 76.4 0.00
1991 0.14 24.4 0.63 0.49 88.9 0.43
1992 0.00 0.0 1.00 0.22 39.3  0.05
1993 0.05 9.3 0.00 0.00 0.0 1.00
1995 0.05 8.8 0.00 0.08 14.4 0.00
1997 0.14 24.8 0.00 0.21 38.6 0.42
1998 0.02 3.4 0.00 0.09 16.5 0.00
1999 0.10 17.8  0.00 0.09 16.0  0.00
2000 0.03 4.6 0.00 0.16 29.5 0.00
2001 0.07 12.9 0.00 0.42 75.7 0.06
2002 0.00 0.0 1.00 0.05 8.9 0.00
2003 0.33 59.0  0.00 0.34 62.0 0.00

2004  0.09 154 0.00 0.09 17.0  0.00




Table 2: Statistics to provide simulation quality assessment (in percentages) for both design sets and all
sample sizes: non-convergence of the minimization algorithm (non-conv); cases truncated by the limits
imposed to the minimization algorithm (¢ = 3 and 74, = 0.91); uncorrelated cases (¢ = 0); and atypical
values of the correlation parameters (¢ > 0.7 and g, > 0.67).

statistic design sample size
20 28 44 45 47 108
non-conv study 06 05 02 02 02 0.1
random 06 04 02 02 02 0.1
=3 study 07 05 07 07 05 02
random 06 09 08 08 09 0.1
mhg =091 study 0.7 07 10 09 08 04
random 0.8 1.2 1.1 1.1 1.1 0.2
¢p=0 study 36.3 33.0 20.7 206 18.0 5.3
random 328 285 181 172 16.2 3.3
¢ >0.7 study 1.3 16 19 19 18 14
random 1.8 22 26 26 24 1.7
Thg > 0.67  study 385 35.8 24.2 247 21.8 10.0

random 3560 316 221 21.1 203 7.6




Table 3: Summary statistics per sets of sampling designs and sample size. Geostatistical abundance
estimates (f1) in kg/hour, bias (bias(f)), relative bias (bias,(f)), variance (var(fi)), mean square error
(MSE) and 95% confidence interval coverage (6(ji)). Mean log variance ratios per sampling design type
(&) measures the relative log effect of the systematic based designs configuration with relation to the
random designs. The last six rows present the same statistics estimated for random designs by sampling
statistics.

method statistic ~ design number of locations
20 28 44 45 47 108
geostatistics it study 1.658 1.662 1.649 1.657 1.651 1.641
random 1.631 1.624 1.625 1.624 1.625 1.625
bias(ft) study 0.025 0.030 0.016 0.026 0.019 0.008
random -0.001 -0.008 -0.007 -0.009 -0.008 -0.007
bias, (1)  study 0.012 0.014 0.003 0.012 0.005 0.001
random -0.004 -0.008 -0.005 -0.006 -0.005 -0.005
var(f) study 0.136 0.108 0.092 0.086 0.089 0.081
random 0.168 0.129 0.113 0.112 0.112  0.097
MSE(f) study 0.272 0.196 0.164 0.144 0.154 0.104
random 0.321 0.230 0.173 0.171 0.171 0.124
o(f) study 0.908 0.922 0.907 0.939 0.920 0.960
random 0.895 0.909 0.937 0.934 0.934 0.954
13 stu/rnd -0.128 -0.107 -0.150 -0.208 -0.179 -0.228
sampling statistics Y random 1.615 1.619 1.618 1.616 1.618 1.622

bias(Y) random -0.017 -0.014 -0.014 -0.017 -0.015 -0.010
(Y) random -0.017 -0.014 -0.013 -0.014 -0.014 -0.006
var(Y)  random 0.197 0.146 0.091 0.088 0.085 0.037
MSE(g) random 4.133  4.238 4.109 4.083 4.090 4.073
5(Y) random 0.900 0910 0908 0.900 0.896 0.840




Figure 1: Sampling designs and the study area (southwest of Portugal). Each plot shows the sample
locations, the bathymetric isoline of 500m and 20m and the coast line. The sampling design name is
presented on the top left corner of the plots. The top row shows the study designs and the bottom row
the random designs.

Figure 2: Summary statistics for the covariance parameters estimation by sampling design as a function
of the true parameter values. bias® (o), variance (A) and mean square error (4). Top figure presents
A, results and bottom figure ¢.

Figure 3: Coverage of the confidence intervals () for different ¢ levels (low = {0.05,0.1},
med{0.15,0.20,0.25} high = {0.30,0.35,0.40}) for estimates of abundance by sampling statistics for
the random designs (+) and by geostatistics for the study (o) and random designs (x).
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Revision notes

FI SH896 REVI SI ON NOTES
ERNESTO JARDI M
08/ Jan/ 2007

The revision was carried out to accormodate the coments of the Reviewers. Bel ow
you can find the reviewers conments followed by our answers. A pdf file with al
the corrections made was al so upl oaded to the system naned

"ej pj . pt BTSgeosi mrevi si ons. pdf ".

- Reviewer #1
Ceneral eval uation: Acceptable after minor revision

This is an interesting, straightforward nmanuscript assessing the effect of
sampl e size and spatial configuration of Portuguese bottomtraw surveys in fish
abundance estimates through geostatistical nethods. The witing is clear and the
figures and tabl es appropriate. The sinulations are carefully designed,

i ncluding the simulated data and the set of correlation paraneters with their
respective maxi num | i kel i hood esti mates.

Ceneral Conments

1. Line 100. "The spatial npdel assuned here is a Log-Gaussi an geostati sti cal
nodel ".

In the discussion section, the authors justify the use of isotropic nodels
(lines 338 to 341) but no explanation and/or justification about the |og-
Gaussi an geostatistical nodel selected are given. Further explanation about the
reasons of the nodel selection will clarify the results.

2. Line 241. "Table 2 summari zes the checks of the results of the paraneter
estimates which were considered satisfactory and coherent™.

It is not thoroughly clear in the text what the authors nean with satisfactory
and coherent. Mre detail will be relevant to better understand the sanpling
desi gn and survey processes

3. Line 347. "Furthernore, the results can be retained for all species with a
spatial behavi our covered by these paraneters”.

It seens |ike the authors assume all the species surveyed have simlar spatial
behavior. This is not necessarily true, especially if the survey is targeting
species with different life history traits and aggregati on behavi ors under

di fferent spatial scales (i.e. denersal fishes vs. sedentary invertebrates).
Furthernore, the autocorrelation structure in the data is not explicitly
mentioned or described. Additional information and discussion on the effect of
spatial correlation for the different stocks targeted by the traw survey on the
nodel selection will inprove the robustness of this study.

M nor conments
Line 123: repeated word: the the
Line 125: Unnecessary word: are

Lines 183 and 206: different notation for sanpling designs <LAVMBDA>d and ?d



Li ne 234: confusing sentence/notation: "...and also included in the Table

A®. . ."

Tabl e 3: Summary statistics units are not specified.

Figure 1: X and Y axis | egends should be specified (i.e. Longitude Wst and
Latitude North respectively).

Figure 2. Variables in the X axis are specified in the | egend but not in the
figure

- Answers to Reviewer #1

1. There's a paragraph (lines 325-332) justifying the use of a log transform in
particular in lines 330-332 is nentioned that the | og was found on previous
anal ysis of the historical data.

2. W agree with the reviewer coment and adjusted the text to clarify it. The
key issue was that the convergence was good and the paraneters estimtes were
within the range of the initial paraneters, so the sinulations could be trusted
for the follow ng work.

3.1 W generalized our results for all species that fit in the range of the
covari ance paraneters used. This may not apply to invertebrates but certainly
apply for nost denersal species, which are the target of our survey. This
sentence was revised to clarify it's aim

3.2 The autocorrelation structure in the data is presented in Table 1 where al
the correlation paraneters estinmated are shown and in |ines 231-240 we descri be
them and the nost inportant particularities found.

3.3 W used two different species with very different aggregation behaviors,
hake an ubi quitous species and horse mackerel a nore schol astic species, and
both species present quite different |life traits. W believe these two entangle
characteristics that are quite extreme within our target species, although we
can not guarantee that other species in specific years would not present
correlation structures that are outside the range choose.

- Revi ewer #3

| propose rejecting this subm ssion because it is overly detailed on the
simulation results (1), gives little insight how the simulations relate to the
original Portuguese survey data (2), of which little is spoken, and because it
is not clear why this is to be considered nore than an exercise confirm ng what
al ready has been stated in Diggle and Lophaven (3). The authors do show an

under standi ng of the issues involved in simulation and did not, in ny mnd, nake
any errors. Sone of the results are technical and issues of isotropy, paraneter
estimation and the Iike are discussed at a nore technical |evel than would be
understood by a general reader. The one significant result is that when there is
autocorrelation in the underlying data it is better to use a conbi ndati on of
regul ar survey with paired random additions (to provide points close to each
other and better estinmate autocorrelation | presune) than a pure random design
for fisheries surveys. If this is indeed a newresult (I'mreally not sure

whet her it is) then this could be acceptable as a greatly reduced in size 'note'
that gives the results and refers to a web document or report for details of the
simulations (4). Certainly the geostatistical equations are not needed and are



better found el sewhere (5). They are not newto the fisheries literature.
Finally, in simulation work Iike this | amleft unsure how general the results
are to other areas (6). This the authors di scussed some and think the results
are general (maybe they are). There is little need in that case to focus on the
real system (7). O herw se, some evaluation using actual data would be useful

(if there were a year when higher sanpling intensity was used &€“ it could be

subsanpl ed to see how nuch the estinates changed) (8). In fairness to the
authors | did not study the results in detail. Maybe sonmeone who does will find
gold init. I did not think it was worth | ooking.

- Answers to reviewer #3

(1) The detailed sinulation results were included to allow readers to understand
t he scope of our work and have enough information to judge if their own
situation is inside the range of our work.

(2) The historical data was used to condition the sinulation work using the
covari ance paraneters obtained with it to define the range of the paraneters
used for sinulation.

(3) The results obtained by Diggle and Lophaven were theoretical and not applied

to a real situation, like we did. On the other hand their work conmpares two
speci fic ways of building sanpling designs, "lattice plus close pairs" and
"lattice plus infill", and never include a pure randomor regular design, which

we did. Also they use only geostatistical nethods and we also included a
conpari son of the designs performance using sanpling theory estinators. W

i ncl uded ani sotropy and | og transfornmati on on our analysis. Mre inportant of
all, we describe an easy way of building a sanmpling design that has the
characteristics of "lattice plus close pairs", by overlapping the random desi gn
with a regular design that can be applicable to nost European Bottom Traw
Surveys. However, this conment called our attention to the fact that the

achi evenents may not be clearly described on the paper and nade the necessary
changes.

(4) This results are new at |east in Fisheries Science once that there is no
reporting of surveys using such sanpling strategy. The authors can not guarantee
that the theoretical results of Diggle and Lophaven were not inplenented already
in other scientific areas, but the bibliographic search did not show any papers
about its inmplenentation. Al so there are secondary results that are newin this
work (i) the approach to build the sanpling designs, (ii) the approach to
conpare sanpling designs with different sanple sizes, (iii) the result about the
underestimati on of abundance variance by the variance of the sanmpling nean.
However, this conment called our attention to the fact that the achi evenents
were not clearly highlighted and we introduced the necessary revisions.

(5) Section 2.1 was included to nmake the paper self contained and to introduce
our notation, providing informati on so that readers clearly understand the scope
of the work. However, we partially agree with the referee and revi sed and
decreased the presentation of the geostatistical framework to a m ni mum
necessary for the readers to follow the paper.

(6) The results are generalized by the spatial behavior of the resource (see
answer 3.1 to reviewer #1). If in another area soneone exploring the spati al
correlation of a resource finds paraneters that fit inside the range of
paraneters used for our sinulations, there is a good chance that the sanpling



design of the survey collecting its data will gain by adopting a nixed
randoni r egul ar desi gn.

(7) As said in point (2) the focus on the real systemis just enough to provide
i nformation for conditioning the simulations so that the results are applicable
to the real world. There was not the intention of explore deeply the data or
conpletely ignore it.

(8) This would be a valid approach if the spatial correlation is ignored, once
that the renoval of a location would not only reduce the sanple size but also
the configuration of the sanpling design with and inmpact extrenely difficult to
assess.
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Abstract

New sampling designs for the Autumn Portuguese bottom trawl survey (ptBTS) were investigated
to explore alternative spatial configurations and possible increments on sample size. The currently
used stratified random design and five proposals of systematic based designs were assessed by a
simulation study, adopting a geostatistical approach based on likelihood methods of inference. The
construction of the designs was based on “informal” method to reflect the practical constraints of
bottom trawl surveys. The proposed designs were a regular design with 28 locations (S28), two
regular designs with extra regular added locations with 44 (S44) and 47 (S47) locations, a design
which overlaps the regular and stratified random design currently used with 45 locations (S45) and
an high density regular design with 108 locations (S108), used just as a benchmark. The designs were
assessed by computing bias, relative bias, mean square error and coverages of confidence intervals.
Additionally a variance ratio statistic between each study designs and a corresponding random design
with the same sample size was computed to separate out the effects of different sample sizes and
spatial configurations. The best performance design was S45 with lower variance, higher coverage
for confidence intervals and lower variance ratio. This result can be explained by the fact that this
design combines good parameter estimation properties of the random designs with good prediction
properties of regular designs. In general coverages of confidence intervals where lower than the
nominal 95% level reflecting an underestimation of variance. Another interesting fact were the

lower coverages of confidence intervals computed by sampling statistics for the random designs, for
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increasing spatial correlation and sample size. This result illustrates that in the presence of spatial
correlation, sampling statistics will underestimate variances according to the combined effect of

spatial correlation and sampling density.

Key-words: bottom trawl surveys; geostatistics; simulation; hake; horse mackerel; sampling design.
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1 Introduction

Fisheries surveys are the most important sampling process to estimate fish abundance as they provide
independent information on the number and weight of fish that exist on a specific area and period.
Moreover this information can be disaggregated by several biological parameters like age, length, maturity
status, etc. Like other sampling procedures the quality of the data obtained depends in part on the

sampling design used to estimate the variables of interest.

For the last 20 to 30 years, bottom trawl surveys (BTS) have been carried out in Western European
waters using design-based strategies (Anon., 2002, 2003){}. However, if one assumes that the number
of fish in a specific location is positively correlated with the number of fish in nearby locations, then
a geostatistical model can be adopted for estimation and prediction and a model-based approach can
be considered to define and assess the sampling design. On the other hand geostatistical principles are
widely accepted and can be regarded as a natural choice for modelling fish abundance (see-e.g. see

Rivoirard et al., 2000; Anon., 2004).

Thompson (1992) contrasts design-based and model-based approaches considering that under the former
one assumes the values of the variable of interest are fixed and the selection probabilities for inference
are introduced by the design, whereas under the latter one consider the observed properties of interest
as realisations of random variables and carries out inference based on their joint probability distribution.
Hansen et al. (1983) points the key difference between the two strategies by stating that design-based
inference does not need to assume a model for the population, the random selection of the sample provides
the necessary randomisation, while the model-based inference is made on the basis of an assumed model
for the population, and the randomisation supplied by nature is considered sufficient. If the model is
appropriate for the problem at hand there will be an efficiency gain in inference and prediction with
model-based approaches, however a model mis specification misspeeifieation—can produce inaccurate
conclusions. In our context, with experience accumulated over 20 years of bottom trawls surveys within
the study area, there is a fairly good idea of the characteristics of the population and the risk of assuming

an unreasonable model should be small.

Portuguese bottom trawl surveys (ptBTS) have been carried out on the Portuguese continental waters
since June 1979 on board the R/V Noruega, twice a year in Summer and Autumn. The main objectives
of these surveys are: (i) to estimate indices of abundance and biomass of the most important commercial
species; (ii) to describe the spatial distribution of the most important commercial species, (iii) to collect
individual biological parameters as maturity, sex-ratio, weight, food habits, etc. (SESITS, 1999)(SESITS
1999). The target species are hake (Merluccius merluccius), horse mackerel (Trachurus trachurus),
mackerel (Scomber scombrus), blue whiting (Micromessistius poutassou), megrims ( Lepidorhombus boscii

and L. whiffiagonis), monkfish (Lophius budegassa and L. piscatorius) and Norway lobster (Nephrops
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norvegicus). A Norwegian Campbell Trawl 1800/96 (NCT) with a codend of 20 mm mesh size, mean
vertical opening of 4.8 m and mean horizontal opening between wings of 15.6 m has been used (Anon.,

2002)0).

Between 1979 and 1980, a stratified random sampling design with 15 strata was adopted. Those strata
were designed using depth and geographical areas. In 1981 the number of strata were revised to 36. In
1989 the sampling design was reviewed and a new stratification was defined using 12 sectors along the
Portuguese continental coast subdivided into 4 depth ranges: 20-100m, 101-200m, 201-500m and 501-750
m, with a total of 48 strata. Due to constraints in the vessel time available the sample size was established
in 97 locations, which were allocated equally splited to obtain 2 locations in each stratum. The locations’
coordinates were selected randomly constraint by the historical records of clear tow positions and other
information about the sea floor, avoiding places where the fishery engine was not able to trawl. This
sampling plan was kept fixed over the years. The tow duration until 2001 was 60 minutes and since
2002 was set in 30 minutes, based on an experiment that showed no significant differences in the mean

abundance and length distribution between the two tow duration.

The main objective of the present work is to investigated proposals of new sampling

designs for the Autumn Portuguese bottom trawl survey (ptBTS). We aimed at explore new spatial

configurations and possible increases on sample size, which could be achieved by e.g. reducing the

hauling time (from 1 hour to 1/2 hour). Secondly, we aimed at describe a pragmatic procedure to build
sampling designs for BTS, develop a statistical approach to compare sampling designs with different

sample sizes and spatial configurations, and provide generalized results that could be used for other
surveys and species. A simulation study was performed to compare the stratified random design which

is currently used against five proposals of systematic based designs, which we called the study designs.
A model based geostatistical approach (Diggle and Ribeiro, 2006) was adopted using likelihood based

methods of inference and conditional simulations to estimate fish abundance on the study area.

Section 2 describes the framework for the simulation study starting with the model specifications followed
by the description of the sampling designs and the setup for the simulation study, conducted in five steps
as described in {Section 2.3}. The results of the simulation study comparing the study designs are

presented in Section 3 and the findings are discussed in Section 4.

2 Methods

The survey area considered for this work corresponds to the Southwest of the Portuguese Continental
EEZ (between Setubal’s Canyon and S.Vicent Cape). Before any calculation the mercator projection

was transformed into an orthonormal space by converting longitude by the cosine of the mean latitude
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(Rivoirard et al., 2000). At Portuguese latitude (38-42°) 1°lat ~ 60nm. The area has ~ 1250nm? and

the maximum distance between two locations was ~ 81nm(1.35°lat).

2.1 Geostatistical frammework

The spatial model assumed here is a log-Gaussian geostatistical model. This is a particular case of the

Box-Cox Gaussian transformed class of models discussed in Christensen et al. (2001). The data consists
of the pair of vectors (x, y) with elements (x;,y;) : i = 1, ..., n, where z; denote the coordinates of a spatial
location within a study region A C R? and y; is the measurement of the abundance at this location.
Denoting by z; the logarithm of this measurement, the Gaussian model for the vector of variables Z can

be written as:

Z(x)=S(z)+¢ (1)

where S(z) is a stationary Gaussian process at locations z, with E[S(z)] = u, Var[S(z)] = 0? and an
isotropic correlation function p(h) = Corr[S(z), S(z')], where h = ||z — 2’|| is the Euclidean distance
between the locations x and z’; and the terms e are assumed to be mutually independent and identically
distributed Gau(0,72). For the correlation function p(h) we adopted the exponential function with
algebraic form p(h) = exp{—h/¢} where ¢ is the correlation range parameter such that p(h) ~ 0.05
when h = 3¢. Within the usual geostatistical jargon (Isaaks and Srivastava, 1989) 72 + o2 is the (total)

sill, o2 is the partial sill, 72 is the nugget effect and 3¢ is the practical range.

Hereafter we use the notation [-] for the distribution of the quantity indicated within the brackets. The
adopted model defines [log(Y)] ~ MVGau(pl,¥), i.e [Y] is multivariate log-Gaussian with covariance

matrix ¥ parametrised by (02, ¢,7%). Parameter estimates can be obtained by maximum likelihood

(Diggle and Ribeiro, 2006). masimising-the-log-likelihood-for-this-modelgiven-by:
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For spatial prediction
consider first the prediction target T'(z¢) = exp{S(xo)}, i.e. the value of the process in the original
measurement, scale at a vector of spatial locations xy. Typically x, defines a grid over the study area.
From the properties of the model above the predictive distribution [T'(z)|Y] is log-Gaussian with mean

pr and variance o2 given by:

exp{E[S(z0)] + 0.5 Var[S(x0)]}
exp{2 E[S(z0)] + Var[S(zo)]} (exp{Var[S(zo)]} — 1)

Hr

with

E[S(z0)] = p+3X7(Z ~1p)

Cov[S(zg)] = ¥ -2 ~1%,

where Yo is a matrix of covariances between the the-variables at prediction locations xo and the data
locations = and Var[S(z¢)] is given by the diagonal elements of Cov[S(z¢)]. In practice, we replace the

model parameters in the expressions above are-by their maximum likelihood estimates.

Under the model assumptions, [T'|Y] is multivariate log-Gaussian and inferences it-is-therefore-possible
to-make-inferencesnot-only-about prediction means and variances, or but-alse-abeut-other properties of

interest, can be drawn either analytically or, more generally, through conditional simulations. Prediction

targets can be specified as functionals deneted-asfunetional-F(S) which are applied to the ;for-which
onditional simulations. For
instance, inferences on the a-funetional-of particular-interest-in-the present-work-was-the-global mean of a
the-particular realisation of the stochastic process over the area are obtained —which-eanbepredieted-by
defining o as a grid covering the study area at which conditional simulations of [S(xo)|Y] are taken; the
simulated values are then exponentiated and averagedeverthe-arearobtaining the-conditional simulations

O - on— Meorecane c othap qrior ac
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2.2 Sampling designs

In general, survey sampling design is about choosing the sample size n and the sample locations =
from which data Y can be used to predict any functional of the process. In the case of the ptBTS some
particularities must be taken into account: (i) the survey targets several species which may have different
statistical and spatial behaviours; (ii) for each species several variables are collected (weight, length,
number, etc.); (iii) the sampling is destructive and replicates can not be obtained; (iv) the variability
of observed fish abundance is typically high, (v) the planned sampling design may be unattained in
practice due to unpredictable commercial fishing activity at the sampling area, bad sea conditions and

other pessible-operational constraints.

Optimal designs can be obtained formally, by defining a criteria and finding the set of sampling locations
which minimises some sort of loss function, as e.g. discussed in Diggle and Lophaven (2006). On the other
hand, designs can be defined informally by arbitrarily defining locations which compromises between
statistical principles and operational constraints. Both are valid for geostatistical geestatiseal-inference
as described in Section 2.1 provided that the locations = are fixed and stochastically independent of the
observed variable Y. The above characteristics of the ptBTS makes it very complex to set a suitable
criteria to define a loss function to be minimized with relation to w#+—the designs. Additionally, costs
of a ship at sea are mainly day based and not haul based and increasing the sample size sizes-has to
consider groups of locations instead of samples-instead-of-the-addition-ef-individual points. Therefore,
our approach was to construct the proposed designs informally trying to accommodate: (i) historical
information about hake and horse mackerel abundance distribution (Anon., 2002; Jardim, 2004){), (ii)
geostatistical principles about the estimation of correlation parameters (e.g. see Isaaks and Srivastava,
1989; Cressie, 1993; Muller, 2001) and (iii) operational constraints like known trawlable grounds and

minimum distance between hauls.

The study designs included the design currently adopted for this survey, named “ACTUAL” with 20
locations, and five systematic based sampling designs. The systematic based designs were defined based
on two possible increments in the sample size: a ~ 40% increment, which is expected to be achievable
in practice by reducing haul time from 1 hour to 1/2 hour; and a ~ 60% increment, which could be
achieved in practice by adding to the previous increment an allocation of higher sampling density to this
area in order to cover the highest variability density—of hake recruits historically found within this zone.
These designs are denoted by “S” followed by a number corresponding to the sample size. For the former
increment a regular design named “S28” was proposed and for the latter three designs were proposedfer
thelatter: “S45” overlaps the designs ACTUAL and S28, allowing direct comparison with the previous
designs; “S44” and “S47” are two infill designs (Diggle and Lophaven, 2006) obtained by augmenting S28

with a set of locations positioned regularly at smaller distances, aiming to better estimate the correlation
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parameter and, in particular, the noise-to-signal ratio. S44 was built by defining a single denser sampling
zone and S47 by adding three areas with denser sampling. A sixth design “S108” was defined to be used

as reference with twice the density of S28.

The designs proposed differ in size and spatial configuration and a simple analysis of any statistics would
confound these two effects. This situation motivated the development of a statistical approach to compare
designs with different A
sizes and spatial configurations, We used a ratio of variances of the relevant estimators between pairs of
study designs and random designs with the same sample size, isolating this way the spatial configuration
effect. To carry out this analysis we built ion: i i ilding six

additional designs with the same sample size as the study designs and with locations randomly chosen

within the study area. We denote these by “R” followed by the number of corresponding locations. Each
random design contains all the locations of the previous one such that the results are comparable without

effects of the random allocation of the sampling locations.

The study and corresponding random designs are shown in Figure 1.

2.3 Simulation study

The simulation study was carried out in five steps as follows.

Step 1 Define a set of study designs. The sampling designs described in Section 2.2 are denoted
by Ag : d =1,...,12, with d = 1,...,6 for the study designs and d = 7,...,12 for the

corresponding random designs, respectively.

Step 2 Define a set of correlation parameters. Based on the analysis of historical data of hake
and horse mackerel spatial distribution and defining 73, = 72/(7% +0?), a set of model pa-
rameters 0, : p = 1, ..., P was defined by all combinations of ¢

and-13,; = {0,0.1,0.2,0.3,0.4,0.5} and 0.05,0.1,0.15,0.2,0.25,0.3,0.35, 0.4} °lat. The

values of o2 are given by setting 02 + 72 = 1.

Step 3 Simulate data. For each parameter set 6, we obtained S=200 simulations Yy, : s =1,...,5
from [Y] on a regular grid of 8781 locations under the model described in Section 2.1. Each
simulation Y, approximates a possible realisation of the process within the study area from
which we computed the mean value p,,. For each Y,, we extracted the data Y4 at the

locations of the sampling designs Ay.

Step 4 Estimate correlation parameters. For each Y4 obtain maximum likelihood estimates

(MLE’S) 6,45 of the model parameter.




210

212

213

214

217

222

229

230

232

233

235

236

237

238

239

Step 5 Simulating from the predictive distribution. A prediction grid z¢ with 1105 locations
and the estimates épsd were used to obtain C=150 simulations f/pdsc ce=1,...,C of the

conditional distribution [T'(x¢)|Y] which were averaged to produce iz/pdsc.

2.4 Analysis of simulation results

The simulation study requires maximum likelihood estimates for the model parameters which are ob-
tained numerically. Therefore a set of summary statistics was computed in order to check the consis-
tency of the results. We have recorded rates of non-convergence of the minimization algorithm; estimates
which coincided eeineides-with the limiting values imposed to the minimization algorithm (¢ = 3 and
T35, = 0.91); absence of spatial correlation (¢ = 0) and values of the parameter estimates which are

considered atypical for the problem at hand (¢ > 0.7 and 735, > 0.67).

The 48 parameters set (0,,), 12 sampling designs (A44A4), 200 data simulations (Y).q) and 150 conditional
simulations (Ypsdc) produced 17.28 million estimates of abundance which were used to compare the
designs. For each design we have computed the estimator fi,.q = c! Zc }:fpdsc of mean abundance fips
which has variance Var(fipsq) = paa+ > . Z;L wiw;pij — 2> ¢ wipia, where pay is the mean covariance
within the area, estimated by the average covariance between the prediction grid locations (z¢); w are
kriging weights; 5;; is the covariance between a pair of data locations; and p; 4 is the average covariance

between each data locations and the area discretized by the prediction grid =y (Isaaks and Srivastava,

1989).

We used bias, relative bias, mean square error (MSE), confidence intervals coverage and ratio of variances
to assess the simulation results, comparing the estimates of the abundance provided by the study designs.
For each design these statistics were averaged over all the simulations (s) and parameter sets (p) or groups
of parameters sets. Considering the difference between the abundance estimates fi,sq and simulated
means [i,s, bias was computed by the difference, relative bias was computed by the difference over the
estimate fi,s and MSE was computed by the square of the difference. For each estimate fipqs a 95%%
confidence interval for s, given by CI(jipsq) = fipsa£1.96+/Var(fipsa), was constructed and the coverage
of the confidence intervals § were computed by the proportion of the intervals which contained the value
of 1, over all the simulations. This statistic was introduced to help assessing the quality of the variance
estimates. At least, we called ratio of variances a statistic £ obtained by dividing the variance Var(fipsq)
of each study design by the random design with the same size. Notice that the single difference among
each pair of designs with the same size was the spatial configuration of the locations and ¢ isolated this
effect. Finally we used the results from the six random designs to contrast sampling design based and

geostatistical based estimates.

All the analysis were performed with the R software (R Development Core Team, 2005) and the add-on
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packages geoR (Ribeiro Jr. and Diggle, 2001) and RandomFields (Schlather, 2001).

3 Results

Table 1 summarises the analysis of historical data showing parameter estimates for a sequence of years.
This aims to gather information on reasonable values for the model parameters. Notice that units for ¢
are given in degrees and, for the adopted exponential correlation model, the practical range in nautical
miles () is given by 3¢ and also included in the tableTable-(+}-with-units-innauticalmiles. The values of
T35, = 1 estimated in some years indicates an uncorrelated spatial process and for such cases estimates
of ¢ equals to zero. For most of the cases 735, was estimated as zero due to the lack of nearby locations
in the sampling plan and the behaviour of the exponential correlation function at short distances. Given
that there is no information in the data about the spatial correlation at distances smaller than the
smallest separation distance between a pair of location, this parameter can not be estimated properly

and the results depend on the behaviour of the correlation function near the origin.

Table 2 present results used for checking the reliability of the parameter estimates once this could have an
impact on the prediction resultssummarizes-thechecks-of theresults-of the-parameterestimates—which

were-considered-satisfactory—and-ecoherent. The highest rate of lack of convergence was 0.6% for the
designs ACTUAL and R20. Estimates of ¢ equals to the upper limit imposed to the algorithm were,

in the worst case, 0.9% for R28 and RA47 and for 735, it was 1.2% for R28. In general there was a
slight worst performance of the random designs but this is irrelevant for the objectives of this study. The
above These-simulations were not considered for subsequent analysis. Lack or weak spatial correlation
given by ¢ = 0 and/or 73, > 0.67 were wasfound in about 35% of the simulations for the designs
with fewer number of locations, and this rate decreases as the sample size increases, down to below
10% for the largest designs. For both statistics the study designs showed slightly higher values than
the corresponding random designs. Identification of weakly correlated spatial processes in part of the
simulations was indeed expected to occur given the low values of ¢ (0.05 and 0.1) and high values of
7251 (0.5) used in the simulations. The number of cases that presented ¢ > 0.7 atypieal-estimatesfor-¢
were slightly higher for random designs, with a maximum of 2.6% for R44 and R45, but were considered
to be within an acceptable range given the high variability of the estimator. Qur overall conclusion was
that the estimation procedure and algorithms produced parameter estimates which can be trusted for
subsequent, analysis.

Figure 2 shows square bias, variance and MSE obtained from the estimates of correlation parameters ¢
and 73, . For 725, the majority of the designs presented similar patterns with a small contribution of

bias to the MSE and increasing values of MSE for higher true parameter values. The designs ACTUAL,
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S28 and R20 behaved differently with higher values of bias at low values of 73, that pushed MSE to
higher values. As an effect of the sample sizes, the absolute values of MSE defines 3 groups composed by
designs with 20 and 28 locations, designs with 44, 45 and 47 locations, and designs with 108 locations;
with decreasing values of MSE among them, respectively. MSE increases with the increase of the true
value of ¢ and its absolute value decreases slightly with the increasing sample sizes. All designs presented
a similar pattern with the variance contributing more than bias to the MSE. The study designs showed

a slightly higher relative contribution of the variance to MSE compared with the random designs.

Table 3 shows geostatistical abundance estimates (1) and their bias, relative bias, variance, MSE and
95% confidence interval coverage for both sets of designs. Additionally the table also shows statistics
based on sampling theory obtained for random designs. For subsequent analysis the designs S108 and
R108 were regarded just as benchmarks since they are unrealistic for practical implementation. Bias
were quite small in all situations and can be considered negligible with higher relative bias of 0.014
for S28. All random designs showed a negative bias whereas all study designs showed a positive one.
Variances estimated by study designs were lower than the ones for the corresponding random designs.
For random designs the variance decays with increasing sample sizes, whereas study designs behaved
differently with S45 presenting the lowest variance followed by swith-greaterdifferences-betweenS544;-545
and-54TandR44, 544, 528 and 520. MSE showed the same pattern since Rds-and Rd7—Thesame-is
validfor MSE——sinece—the-bias were small, however—with-higher-abselute—values—supporting our claim
that bias were not relevant for the purpose of this work. The coverages of confidence intervals () were
lower than the nominal level of 95% excepted for S108 and R108, reflecting an underestimation of the
variance. Considering the designs individually it can be seen that ACTUAL, S28 and S45 showed a lower
underestimation than the equivalent random designs. To better investigate this Figure 3 presents values
of § splitted by three levels of correlation (low={0.05, 0.1}, med={0.15, 0.20, 0.25}, high={0.3, 0.35,
0.4}). For geostatistical estimates the coverages § increases with higher true values of ¢ and larger sample
sizes, whereas sampling statistics showed a different pattern, with maximum values for R44 for low and
medium correlation levels and for R28 for high correlation levels. This behaviour is more noticeable for
stronger spatial correlation, in particular, the largest designs showed lower confidence interval coverage

pointing for a more pronounced underestimation of the variance.

Logarithms of the variance ratios between corresponding “S” and “R” designs are presented in Table 3.
Without considering S108 for the reasons stated before, the best result was found for S45 (—0.208)
and the worst for S28 (—0.108). This must be balanced by the fact that S45 showed a lower variance
underestimation than R45, with the opposite happening for S44/R44 and S47/RA47, so, in reality, the
value of ¢ is smaller for S45 than for S44 and S47.
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4 Discussion

The choice of sampling designs for BTS is subject to several practical constraints and this has motivated
the adoption of informally defined designs which accommodated several sources of information like fishing
grounds, haul duration, previous knowledge of the spatial distribution of hake and horse mackerel, among
others; -which could not be incorporated into a design criteria in an objective way. The fact that this
can generate designs with different sample sizes is a drawback of this approach. However, implementing
a systematic design on an irregular spatial domain is also likelyto provide designs with different sample
sizes, depending on the starting location. On the other hand costs Cests-of hauling are relatively small
when compared with the fixed costs associated with a vessel’s working day and increasing sample sizes
for a BTS must consider sets of locations which can be sampled in one working day. For these reasons
the different sample sizes of each design are not just a feature of the adopted approach but also a result

of the BTS particularities.

The confounding effects of sample size and spatial configuration of the proposed designs jeopardized
the comparison of their ability in estimating the abundance. To overcome eireunveet—this limitation
a methodology to compare designs with different sample sizes and spatial configurations was required.
To deal with this issue we’ve introduced a mean abundance variance ratio statistic, between the study

designs and a corresponding simulated random design with the same sample size.

In fisheries science the main objective for the spatial analysis usually lies in predicting the distribution
of the marine resource, aiming, for instance, to define marine protected areas and to compute abundance
indices for stock assessment models (Anon., 2004)(}. For such situations the model parameters are not
the focus of the study, but just a device to better predict the abundance. Muller (2001) points that the
optimality of spatial sampling designs depends on the objectives, showing that ideal designs to estimate
covariance parameters of the stochastic process are not the same to predict the value of the stochastic
process in a specific location and/or to estimate global abundance. We have not compared the study
designs with respect to the estimation of the covariance parameters provided that our main concern was

spatial prediction of abundance.

The choice of the parameter estimation method was a relevant issue in the context of this work. The
absence of a formal criteria to identify the “best” design naturally led to the use of geostatistical simula-
tions to compare the proposed designs. To carry out a simulation study it is useful to have an objective
method capable of producing single estimates of the model parameters. Within traditional geostatistical
methods (Isaaks and Srivastava, 1989; Cressie, 1993; Goovaerts, 1997; Rivoirard et al., 2000) {(e-g—);
the estimation entangles subjective analyst’s intervention to define some empirical variogram param-
eters such as lag interval, lag tolerance and estimator for the empirical variogram. Likelihood based

inference produces estimates of the covariance parameters without a subjective intervention of the data
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analyst, allowing for automatization of the estimation process, which is suitable for simulation studies.
For the current work we have also used other methods such as restricted maximum likelihood (REML)
and weighted least squares, but they have produced worse rates of convergence in the simulation study.
In particular the REML presented an high instability with a high frequency of atypical results for ¢.
An aspect of parameter estimation for geostatistical models which is highlighted when using likelihood
based methods is regarded to parameter identification due to over-parametrized or poorly identifiable
models (see e.g. Zhang, 2004). To avoid over parametrization we used a log-transformation and the
process was considered isotropic, avoiding the inclusion of three parameters on the model: the box-cox
transformation parameter (Box and Cox, 1964) and the two anisotropy parameters, angle and ratio. The
choice of the log transformation was supported by the analysis of historical data and does not impact the
comparison of the designs, given that the relative performance of each design will not be affected by the
transformation. A point of concern with the log transformation was the existence of zero values which, in
the analysis of the historical data, were treated as measurement error and included in the analysis with
a translation of the observed values, by adding a small amount to all observations. However, it must be
noted this is not always recommended and, in particular, if the stock is concentrated on small schools
that cause discontinuities on the spatial distribution, these transformations will not produce satisfactory
results. Concerning anisotropy, a complete simulation procedure was carried out considering a fixed
anisotropy angle on the north-south direction and an anisotropy ratio of 1, 1.5 or 2. As expected, the

absolute values obtained were different but the overall relative performance the-designs—was the same,

supporting our decision to report results only for the isotropic model.

A major motivation for performing a simulation study was the possibility to use a wide range of covariance

parameters that reflect different spatial behaviours;refleeting-different-peossible spatial behavieurswhich

behaviourcovered-by-these-parameters—. We used two species with different agegregation patterns, hake

and horse mackerel, the first an ubiquitous species and the last a more scholastic species, to define the
range of the parameters for simulation; suggesting results that can be extended for species with behaviour
compatible with the covariance parameters used here.

From a space-time modeling perspective, one of the most interesting analysis for fisheries science is the
fluctuation of the stochastic process over time contrasted with the specific realization in a particular time.
Therefore the comparison with the mean of the realisations (p,s) was considered more relevant then to

the mean of the underlying process (u) for the computation of bias and variability. The results showed
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higher bias for study designs when compared with random designs, but in both cases showing low values
which were considered negligible for the purposes of this work. This conclusion was also supported by

the fact that MSE showed a similar relative behaviour as variance.

Apart from the design S108, which was introduced as a benchmark and not suitable for implementation,
the design that performed better was S45 with lower variance, confidence interval coverage closer to the
nominal level of 95% and lower variance ratio (Table 3). One possible reason is the balance between
good estimation properties given by the random locations and good predictive properties given by the
systematic locations, however the complexity of the BTS objectives makes it impossible to find a full
explanation for this results. A possible indicator of the predictive properties is the average distance
between the designs and the prediction grid locations, which reflects the extrapolation needed to predict
over a grid. We found that S45 had an average of 2.61nm whereas for S47 the value is 2.72nm, explaining

in part the S45 performance.

These results are in agreement with Diggle and Lophaven (2006) who showed that lattice plus closed pairs
designs (similar to S45) performed better than lattice plus in-fill designs (similar to S44 and S47) for
accurate prediction of the underlying spatial phenomenon. The combination of random and systematic
designs like S45 is seldom considered in practice and we are not aware of recommendations of such designs

for BTS.

It was interesting to notice that most designs presented a coverage of confidence intervals below the
nominal level of 95% revealing the variances were underestimated. It was not fully clear how to use
such results to correct variance estimation and further investigation is needed on the subject. Care must
be taken when looking at variance ratios since underestimated denominators will produce higher ratios
which can mask the results. This was the case of S45 when comparing to S47 and S44, supporting our

conclusions about S45.

Another result of our work was the assessment of abundance estimates from random designs by sampling
statistics, the most common procedure for fisheries surveys (Anon., 2004){}, under the presence of spatial
correlation. In such conditions an increase in sample size may not provide a proportional increase in
the quantity of information due to the partial redundancy of information under spatial correlation.
Results obtained for coverages of confidence intervals illustrated this (Table 3 and Figure 3), with smaller

coverages for larger sample sizes and higher spatial correlation. In our opinion this is due to an -

he-overestimation of the degrees of freedom
that lead led-to an underestimation of prediction standart errors producing the smaller coverages. These
findings fundings-support claims to consider geostatistical methods to estimate fish abundance, such that
correlation between locations is explicitly considered in the analysis, and highlighting the importance of

verifying the assumptions behind behing-sampling theory before computing the uncertainty of abundance
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Table 1: Exponential covariance function parameters (¢, 73, ) and the geostatistical range (r) estimated
yearly (1990-2004) for hake and horse mackerel abundance. The values of ¢ are presented in degrees of
latitude and range in nautical miles. The maximum distance between pairs of locations was 63nm.

Hake Horse mackerel

#(°lat) r(nm) Thpp #(°lat) r(nm) Thpp
1990 0.05 9.1 0.01 0.42 76.4  0.00
1991 0.14 244  0.63 0.49 88.9  0.43
1992 0.00 0.0 1.00 0.22 39.3 0.05
1993 0.05 9.3 0.00 0.00 0.0 1.00
1995 0.05 8.8 0.00 0.08 14.4  0.00
1997 0.14 24.8 0.00 0.21 386  0.42
1998 0.02 3.4 0.00 0.09 16.5 0.00
1999 0.10 17.8  0.00 0.09 16.0 0.00
2000 0.03 4.6 0.00 0.16 29.5 0.00
2001 0.07 12.9  0.00 0.42 75.7  0.06
2002 0.00 0.0 1.00 0.05 8.9 0.00
2003 0.33 59.0 0.00 0.34 62.0 0.00
2004 0.09 15.4  0.00 0.09 17.0  0.00
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Table 2: Statistics to provide simulation quality assessment (in percentages) for both design sets and all
sample sizes: non-convergence of the minimization algorithm (non-conv); cases truncated by the limits
imposed to the minimization algorithm (¢ = 3 and 73g;, = 0.91); uncorrelated cases (¢ = 0); and
atypical values of the correlation parameters (¢ > 0.7 and 735, > 0.67).

statistic design sample size
20 28 44 45 47 108
non-conv study 06 05 02 02 02 01
random 06 04 02 02 02 01
=3 study 07 05 07 07 05 02
random 06 09 08 08 09 01
TheL =091  study 07 07 10 09 08 04
random 0.8 1.2 1.1 1.1 1.1 0.2
¢p=0 study 36.3 33.0 20.7 20.6 180 5.3
random 328 285 181 172 16.2 3.3
¢ > 0.7 study 1.3 16 19 19 18 14
random 1.8 22 26 26 24 1.7
ThpL > 0.67  study 385 35.8 242 24.7 21.8 10.0

random 35,0 316 221 21.1 203 76
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Table 3: Summary statistics per sets of sampling designs and sample size. Geostatistical abundance
estimates (i) in kg/hour, bias (bias(fi)), relative bias (bias,(f&)), variance (var(fi)), mean square error
(MSE) and 95% confidence interval coverage (6(ji)). Mean log variance ratios per sampling design type
(&) measures the relative log effect of the systematic based designs configuration with relation to the
random designs. The last six rows present the same statistics estimated for random designs by sampling
statistics.

method statistic  design number of locations
20 28 44 45 47 108
geostatistics i study 1.658 1.662 1.649 1.657 1.651 1.641
random 1.631 1.624 1.625 1.624 1.625 1.625
bias(f) study 0.025 0.030 0.016 0.026 0.019 0.008
random -0.001 -0.008 -0.007 -0.009 -0.008 -0.007
bias, (i)  study 0.012 0.014 0.003 0.012 0.005 0.001
random -0.004 -0.008 -0.005 -0.006 -0.005 -0.005
var(fi) study 0.136 0.108 0.092 0.086 0.089 0.081
random 0.168 0.129 0.113 0.112 0.112 0.097
MSE(iz)  study 0.272 0.196 0.164 0.144 0.154 0.104
random 0.321 0.230 0.173 0.171 0.171 0.124
o(f) study 0.908 0922 0.907 0.939 0.920 0.960
random 0.895 0.909 0.937 0934 0.934 0.954
13 stu/rnd -0.128 -0.107 -0.150 -0.208 -0.179 -0.228
sampling statistics Y random 1.615 1.619 1.618 1.616 1.618 1.622

bias(Y) random -0.017 -0.014 -0.014 -0.017 -0.015 -0.010
(Y) random -0.017 -0.014 -0.013 -0.014 -0.014 -0.006
var(Y) random 0.197 0.146 0.091 0.088 0.085 0.037
MSE(i) random 4133 4.238 4109 4.083 4.090 4.073
5(Y)  random 0.900 0.910 0.908 0.900 0.896 0.840
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Figure 1: Sampling designs and the study area (southwest of Portugal). Each plot shows the sample
locations, the bathymetric bathimetrie-isoline of 500m and 20m and the coast line. The sampling design
name is presented on the top left corner of the plots. The top row shows the study designs and the
bottom row the random designs.

Figure 2: Summary statistics for the covariance parameters estimation by sampling design as a function
of the true parameter values. bias® (o), variance (A) and mean square error (+). Top figure presents
A, results and bottom figure ¢.

Figure 3: Coverage of the confidence intervals (J) for different ¢ levels (low = {0.05,0.1},
med{0.15,0.20,0.25} high = {0.30,0.35,0.40}) for estimates of abundance by sampling statistics for
the random designs (4) and by geostatistics for the study (o) and random designs ().
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FIGURE 03
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