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Abstract1

This work presents a methodology to estimate abundance at age by year combining the spatial2

distribution of the stock and the age structure in a single parametric model. By separating the age com-3

positions from the age-aggregated abundance, suitable models can be applied to each variable improving4

the analysis of the data and increasing the �exibility of the model. The parametric characteristics of the5

model allows the usage of Monte Carlo methods, providing means to overcome di�culties in obtaining6

the analytical expression of abundance at age. On the other hand, Monte Carlo simulations can be7

used as inputs for large simulation frameworks like those use for Management Strategies Evaluations.8

Age structures were studied by compositional data analysis allowing the full covariance structure of age9

compositions to be considered. Age-aggregated observations were modelled with geostatistical methods10

explicitly modelling the correlation between abundance at di�erent locations. The methodology produces11

abundance indicators that provide an overview of abundance along di�erent perspectives. The analysis12

of age compositions provides an insight on how the population structure evolves over time. The geosta-13

tistical submodel returns abundance indicators for both, space and time dimensions. An application to14

Hake (Merluccius merluccius) caught by the Portuguese Bottom Trawl Surveys is presented, and meth-15

ods are proposed to handle speci�c characteristics of the problem at hand. We suggest a calibration of16

the di�erent conditions on which data were collected using a GLM with negative binomial distribution17

and several covariates which also deals with asymmetry and over-dispersion.18

Key-words: abundance at age, bottom trawl survey, hake, geostatistics, compositional data analysis19
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1 Introduction20

Estimates of abundance are important indicators of stock size and space-time distribution of marine popu-21

lations. Such indicators contain valuable information for stock assessment, where they are used as �sheries-22

independent inputs, and, more generally, for �sheries advice and ecological management. Several methods23

have been proposed to study abundance using design-based techniques (Cochran 1960; Thompson 1992;24

Smith and Gavaris 1993); speci�c statistical distributions like log-normal (McConnaughey and Conquest25

1993; Brynjarsdottir and Stefansson 2004; Dingsor 2005; Smith 1990), delta (Pennington 1983; Stefansson26

1996; Smith 1988), Poisson and negative binomial (O'Neill and Faddy 2003; Pradhan and Leung 2006) or27

zero in�ated distributions (Martin et al. 2005; Mendes 2007); and di�erent modelling procedures like gen-28

eralised linear models (Smith 1990; Stefansson 1996; Brynjarsdottir and Stefansson 2004; Chen et al. 2004;29

Sousa et al. 2007), generalised additive models (Piet 2002), geostatistics (Rivoirard et al. 2000; Roa-Ureta30

and Niklitschek in press) or hierarchical models (Mendes 2007).31

Sampling �sh populations will naturally originate data sets with high correlation, both in population struc-32

ture and spatial distribution, once individuals with similar ages or lengths will assemble looking for the33

best geophysical conditions. Following the work on statistical analysis for compositional data by Aitchison34

(1982, 2003), Hrafnkelsson and Stefansson (2004) and Babak et al. (2007) describe methods to model the35

correlation between length groups using Bayesian methods and maximum likelihood estimators, respectively.36

Within this approach, population age structure is represented by compositional data, de�ned by vectors of37

proportions at age subject to the constraint of summing one. Spatial patterns encountered on abundance38

data are expressed by the correlation between observations related to the distance between the geographical39

locations where the observations were collected and modelled with geostatistical methods (Cressie 1993;40

Diggle et al. 1998; Chilès and Del�ner 1999; Diggle and Ribeiro 2007).41

Our aim with this work is to propose a methodology combining the spatial distribution of the stock and42

the relation between age groups into a single model. The methodology provides a framework to obtain43

simulations of abundance at age that can be used as input to large simulation frameworks like Management44

Strategy Evaluation (MSE) (Hammond and Donovan in press; Johnston and Butterworth 2005; Punt et al.45

2005; Kell et al. 2007), a major subject for modern scienti�c advice on �sheries and ecological management.46

An application to hake (Merluccius merluccius) caught by the Portuguese Bottom Trawl Survey (BTS) is47

presented, and methods to handle speci�c characteristics of modelling hake's abundance are proposed.48

The next section describes the Portuguese BTS and the data set used for analysis. On the Methods section we49

will start by presenting the model and its most important characteristics followed by a detailed description of50

parameter estimation for abundance at age. The Results section describes the adjustments required to apply51

the proposed model to estimate hake's abundance at age and presents di�erent perspectives of abundance:52
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the time series of age aggregated abundance showing the trends in biomass over time; the yearly spatial53

distribution of biomass showing areas of higher density of hake; and the yearly abundance at age which54

constitutes a major input parameter for stock assessment. Finally, we discuss the model and its limitations,55

and compare the results obtained with the abundance at age estimates obtained using design-based statistics.56

2 Material57

The Portuguese BTS have been carried out in Portuguese continental waters since 1979 on board the R/V58

Noruega and R/V Capricórnio. The main objectives of these surveys are: (i) estimate indices of abundance59

and biomass of the most important commercial species; (ii) describe the spatial distribution of the most60

important commercial species, and (iii) collect individual biological parameters such as maturity, sex-ratio,61

weight, food habits, etc. The target species are hake (Merluccius merluccius), horse mackerel (Trachurus tra-62

churus), mackerel (Scomber scombrus), blue whiting (Micromessistius poutassou), megrims (Lepidorhombus63

boscii and L. whi�agonis), monk�sh (Lophius budegassa and L. piscatorius) and Norway lobster (Nephrops64

norvegicus). A Norwegian Campbell Trawl 1800/96 (NCT) with a codend of 20 mm mesh size, mean vertical65

opening of 4.8 m and mean horizontal opening between wings of 15.6 m has been used (Anonymous 2002).66

A strati�ed sampling design was used to de�ne locations for data collection between 1989 and 2004. The67

strati�cation was de�ned by 12 sectors along the Portuguese continental coast subdivided into 4 depth ranges:68

20-100m, 101-200m, 201-500m and 501-750 m, with a total of 48 strata. Constraints in vessel time limited the69

sample size to 97 locations, evenly allocated to obtain two locations within each stratum. The coordinates70

of the sampling locations were selected randomly, albeit constrained by the historical records of clear tow71

positions and other information about the sea �oor, avoiding places where trawling was not possible. In 200572

a new sampling design, composed by a regular grid with a set of additional random locations, was introduced73

following Jardim and Ribeiro Jr. (2007). The tow duration was 60 minutes until 2001 and then reduced to 3074

minutes for the subsequent years, based on an experiment that showed no signi�cant di�erences in the mean75

abundance and length distribution between the two tow durations (Cardador, pers.comm.). Historically the76

Portuguese Autumn bottom trawl survey has been carried out between September and December and hauls77

occurred during daylight. The number of hauls per year, the estimates of abundance by year together with78

its standard deviation and coe�cient of variation are presented in the �rst �ve columns of Table 1. Sampling79

statistics of abundance at age per year and coe�cient of variation are showed on the top panel of Table 2.80

The data set included all valid hauls executed during the Autumn survey between 1989 and 2006. Each81

record corresponds to hake catches in number of individuals by age, haul duration (minutes), haul time,82

haul date, coordinates (UTM, Zone 29), bottom salinity and bottom temperature. Catches obtained with83

R/V Capricórnio (1996, 1999, 2003 and 2004) were calibrated to R/V Noruega's catches using factors by84
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age estimated in a calibration exercise in 2006 (Cardador, pers.comm). Figure 1 shows the map of observed85

age aggregated catches of hake during the study period.86

3 Methods87

The main target of the analysis is to model the abundance at age, I, which is given by the product of two88

random variables Iij = YiPij where Yi represents the age aggregated abundance for the ith year, i = 1, . . . , n,89

and Pij refers to the proportion of individuals at the ithyear and jthage, j = 1, . . . ,m. The age composition90

for each year is denoted by Pi. The model aims to disentangle population abundance from the composition91

by age, so that both quantities can be modelled independently and taking into account the nature of each92

one. Monte Carlo methods combine outputs of both submodels to obtain samples of the distribution of I93

allowing for inferences about Iij . This section provide details on the models and methods adopted.94

Observed data on abundance at age consists of the total catch per unit e�ort in year i, age j and haul95

h = 1, . . . ,H represented by Cijh, from which proportion at age is computed by Pijh = Cijh(
∑m

j=1 Cijh)−1.96

Compositional data analysis (Aitchison 1982, 2003) is used to model Pi, transforming the m proportions97

Pijh to m − 1 additive log-ratios compositions Dijh = log(PijhP−1
ij=a,h) with j 6= a. This is a convenient98

scale for parameter estimation and simulation given that compositions follow approximately a multivariate99

Gaussian distribution, Di ∼ MVG(Λi,Σi), from which the mean estimator estimator Λ̂i ∼ MGV(µi, ςi).100

The covariance structure of the age compositions can be estimated from the data and subsequently used101

in the simulation procedure. Maximum likelihood estimators are given by µ̂i = µ̄i, the vector of marginal102

arithmetic means, and ς̂i = ρ̂(Di)σ̂
2
i H

−1
i , where ρ̂(Di) is the sample correlation matrix and σ̂2

i is the vector103

of marginal sample variances (Murteira 1990). Parametric bootstrap (Efron and Tibshirani 1993) is used104

to assess the variability of the proportions by sampling from MGV(µ̂i, ς̂i) and back-transforming to get the105

empirical distribution of age proportions.106

Abundance Yi taken at di�erent locations is considered to be spatially correlated. However, spatial patterns107

may be blurred by factors a�ecting abundance observations unrelated to population size such as lighting108

and sea conditions (Petrakis et al. 2001; Chen et al. 2004; Hjellvik et al. 2004; Johnsen and Lilende 2007).109

If such factors are also measured, a generalised linear model (GLM) (McCullagh and Nelder 1991) can be110

used to estimate their e�ects and calibrate the observations by predicting to similar hauling conditions. This111

calibrated abundance data is computed by using the GLM to predict yearly abundance in speci�c conditions,112

the reference conditions and adding the deviance residuals. GLMs applied at this stage are also able to113

deal with asymmetry and over-dispersion caused by the large number of null catches (Martin et al. 2005;114

Maunder and Punt 2004) or the occurrence of very large catches (Smith 1997; Kappenman 1999).115

Consider now the calibrated abundance Zi(xk), in year i at location xk where k = 1, . . . ,K indexes sampled116
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locations in the study region A ⊂ R2. We model Zi(xk) with a Gaussian spatial geostatistical process117

Diggle and Ribeiro (2007). The vector of variables Z(x) can be written as Z(x) = S(x) + ε where S(x) is a118

stationary Gaussian process at locations x, with E[S(x)] = β, V ar[S(x)] = σ2 and an isotropic correlation119

function ρ(h) = Corr[S(x), S(x′)], where h = ‖x− x′‖ is the Euclidean distance between locations x and120

x′. The terms ε are assumed to be mutually independent and identically distributed Gau(0, τ2). Under121

these settings Z(x) ∼ MVG(β, Θ) with Θ parametrised by (σ2, φ, τ2), where φ is the parameter re�ecting122

the extent of the spatial correlation. Several geostatistical methods are available to make inference about123

Θ (Isaaks and Srivastava 1989; Cressie 1993; Diggle et al. 1998; Chilès and Del�ner 1999; Rivoirard et al.124

2000; Diggle and Ribeiro 2007). We adopt Bayesian methods to compute the posterior distributions of the125

correlation parameters and predictive distributions for the values of Z(x0), where x0 is a grid of unsampled126

locations over the study area (Diggle and Ribeiro 2007). Our main goal with this approach is to take into127

account explicitly parameter uncertainty. Notice that β re�ects Z(x) mean abundance over the study area128

and its posterior distribution is used to obtain the empirical distribution of Y directly or back transforming129

if necessary. On the other hand, the predicted Z(x0) over the study area re�ects the spatial distributions of130

abundance allowing the study of spatial patterns and their evolution by year.131

The analysis Yi andPi can be performed in parallel and the Monte Carlo simulations are combined to produce132

the distribution of abundance at age by Iijs = YisPijs where s = 1, . . . , S indexes simulations. Figure 2133

shows the algorithm used clearly identifying the two submodels, the data used for each, how the distinct134

analysis progress to estimate parameters and run Monte Carlo simulations, and the �nal combination of135

both submodels into abundance at age. Statistics of interest are computed based on Iijs and the abundance136

at age simulations can be used as input to large simulation frameworks, like those requested by MSE.137

All analysis were carried out using R (R Development Core Team 2007) and the add-on package geoR138

(Ribeiro Jr and Diggle 2001).139

4 Results140

We have started the analysis with diagnostics for the model assumptions and suitable transformations. A141

multinomial model without covariates was compared to another �t with age proportions explained by the142

total catch. The latter did not improve the �t supporting the assumption of independence between total143

abundance and age proportions. For the additive log-ratio transformation it is necessary to choose a reference144

age class and a constant to be added to the data in case of the occurrence of zero counts. Choices for age145

class two and a value 0.1 for the constant ensured better properties in terms of skewness and normality at146

transformed scale, all together inducing only a small average change rate for all ages, except for age 5 with147

rates up to 3, mainly due to the small values observed.148
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Figure 3 shows the age compositions per year with quantile based intervals obtained from 1000 bootstrap149

simulations. The survey catchability shows a dome shape with maximums at ages 1 and 2 that present the150

highest relative catches. Shifts between ages can re�ect shifts in abundance at age but can also be due to151

ageing errors, not uncommon for hake (de Pontual et al. 2006; Pineiro et al. 2007).152

Abundance observations showed greater variability than predicted by a Poisson model and a negative bino-153

mial GLM with log link function provided a better �t. The measured covariates were dayperiod, fortnight,154

bottom salinity and bottom temperature. Dayperiod aimed to capture the e�ect of daylight with tree lev-155

els, until one hour after sunrise, after one hour before sunset and between both limits. Fortnight captured156

seasonal e�ects with seven levels, from the second half of September to the end of December. Bottom tem-157

perature and salinity were included as continuous variables to capture geophysical e�ects. The GLM was158

�tted by �rstly including and �xing the year e�ect and then testing for all the other covariates including159

second degree interactions. The analysis showed signi�cant e�ects only for year, fortnight and their interac-160

tion. The non-signi�cance of the other covariates can be explained by the fact that all hauls are executed161

with some daylight and the bottom temperature and salinity are roughly constant at the depths where most162

sampling took place. The adjusted model reduced the residual deviance in 13% which, although low, is not163

unusual for this kind of analysis (Maunder and Punt 2004).164

The calibrated data set Zi(xk) used in the geostatistical analysis was obtained by predicting abundance per165

year for the second fortnight of October and adding these values to the corresponding deviance residuals.166

To verify the univariate normality of Zi(xk) the Shapiro-Wilks normality test was computed and 16 out of167

18 data sets did not reject the null hypothesis of normality at an α = 0.01, whereas for the log-transformed168

original data set, the null hypothesis was not rejected only for one out of 18.169

Geostatistical analysis adopted the exponential correlation function with algebraic form ρ(h) = exp{−h/φ}170

with ρ(h) ' 0.05 for the practical range h = 3φ. Taking into account the small data set available and the171

lack of observations at short distances, we avoid estimating any other correlation parameter from the data172

by trying to �t di�erent correlation models. Before proceeding with inference and prediction we checked for173

anisotropy e�ects using pro�led likelihoods (Diggle and Ribeiro 2007). The pro�les obtained were too �at to174

identify anisotropy parameters and the analysis proceeded assuming an isotropic spatial process. In practice,175

anisotropy e�ects are extremely di�cult to identify and usually require subjective information and/or a fairly176

large amount of samples which is uncommon on bottom trawl surveys data sets. Considering isotropy and177

the small number of samples available per year, we rotated the southern continental shelf 90o clockwise, so178

that it became aligned with the western coast, in order to use as much information as possible for inference179

on model parameters.180

The priors for the correlation parameters were set based on our experience modelling this data (Mendes 2007;181
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Jardim and Ribeiro Jr. 2007, in press) and our knowledge of the stochastic process correlation structure. For182

the range parameter φ we used an exponential prior distribution with an expected value of 20km, re�ecting183

higher beliefs on short correlations. The nugget variance parameter τ2 was reparameterized into a relative184

nugget τ2
REL = τ2σ−2 and the prior set as a zero in�ated Poisson (ZIP) distribution with mean of the185

positive values equals to 1.25 and a probability of zero value equals to 0.25. These probabilities were initially186

computed for values 0 to 8 and reassigned to 9 even intervals between 0 and 2. Our choice is based on the187

prior belief that the GLM analysis should have removed most of the random noise from the data and τ2 is188

a priori expected to be small. On the other hand, to estimate τ2 it is necessary to have observations at the189

same location or at very close distances, which is operationally not feasible for BTS. For the mean parameter190

β we used a �at prior. The same priors were adopted for all years. Prior and posterior distributions of φ191

and τ2
REL are shown in Figure 4. The posterior distributions of φ showed modes approximately between 10192

and 20 km, re�ecting a practical correlation range between 30 and 60 km, perfectly acceptable considering193

the length of the Portuguese coast. For τ2
REL it is clear that the data does not contain much information194

about the parameter and the posterior distributions are very similar to the priors, in particular in 1990195

and between 1992 and 1997. This impacts prediction variances as τ2 re�ects the random variability of the196

process.197

Yearly abundance simulations were computed by Yis = exp(βis) where βis are the yearly simulations of the198

posterior distribution of β. The requirement to back transform βis was caused by the log transformation used199

to compute the calibrated abundance with the GLM. The abundance index and the 95% credibility intervals200

were obtained computing the median and the 0.025 and 0.975 quantiles of Yi (Figure 5). Abundances201

showed a cyclic pattern with high values in 1991, 1997, 2001 and 2005; and low values in 1993, 1996, 1999,202

2003 and 2006. There is a persistent increase from 1993 although still within the historical limits. The203

credibility intervals are asymmetric and showed larger intervals in the highest estimates as expected by the204

GLM log transformation. Table 1 presents several metrics computed using design statistics and geostatistics.205

Considering the asymmetry of Yis we computed the relative median absolute deviation, the ratio between206

the median absolute deviation and the median, that can be seem as a robust adimensional indicator of207

precision, comparable to the coe�cient of variation. The values obtained by geostatistics are lower than208

those obtained by design statistics. This result can be explained by a screening e�ect (Isaaks and Srivastava209

1989) that downweights groups of observations nearby as the information contained in each observation210

becomes redundant. In such cases aggregations of high observations in space (Figure 1) have a lower impact211

on the results of the geostatistical analysis than on design-based methods given the sensibility of the sample212

mean to high values. The higher precision obtained with design estimators is apparently over-optimistic213

for BTS, where sample sizes are always small due to the operational costs. The amount of information214

contained in each sample is overestimated when ignoring the correlation between samples, leading to an215
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underestimated variance. Geostatistical results present a relative median absolute deviation between 14 and216

25, in agreement with other studies (e.g. see Smith and Gavaris 1993; Dingsor 2005; Sousa et al. 2007;217

Roa-Ureta and Niklitschek in press).218

Spatial predictions were carried out on a grid over the study area with locations at 5 km of each other219

resulting in 1255 locations within the study area. Figure 6 presents the spatial distribution of hake over220

the study area standardised by the maximum in each year so that the year e�ect was removed highlighting221

the spatial e�ect present on the maps. It is possible to identify persistent areas of high abundance on the222

west coast at latitudes approximately of 4150km (UTM), 4280km (UTM) and 4400km (UTM). The �rst and223

second areas are known recruitment spots and the last one is less persistent, but also known to be an area224

of high recruitment.225

Abundance at age and year are presented in the bottom panel of Table 2 with the relative median absolute226

deviation between brackets. As with Yi the estimates of abundance at age are lower and less precise than227

the design-based ones, resulting from the fact that Iij accounts for the variability of both, Yi and Pi. The228

same reasoning regarding the screening e�ect and variance underestimation also applies here. A comparison229

between design-based statistics and our estimates is presented in Figure 7, with both time series standardised230

to zero mean and unit variance. In general both series are similar identifying the same maxima and minima,231

the highest di�erences arise in ages 4 and 5 which are not well represented on the survey catches.232

5 Discussion233

The model proposed considers that modelling abundance at age requires two main characteristics to be taken234

into account, the aggregation of individuals of similar length and the spatial patterns of abundance, account-235

ing for the major sources of variability. The separation of the age compositions from the age-aggregated236

abundance allows suitable models to be applied to each variable, improving the analysis and increasing the237

�exibility of the model. Age structures were studied by compositional data analysis considering the full238

covariance structure of age compositions. Age-aggregated data was modelled with geostatistical methods239

explicitly taking into account the correlation between abundance at di�erent locations. Geostatistical models240

for compositional data (Walvoort and de Gruijter 2001; Pawlowsky-Glahn and Olea 2004) are still in devel-241

opment and our view is that the scarcity of data provided by BTS tend to impair the use of data demanding242

approaches.243

An important feature of the proposed model is its full parametric speci�cation allowing for the usage of Monte244

Carlo simulation methods, providing ways to overcome di�culties in obtaining an analytical expression for245

the statistical distribution of abundance at age, while still allowing for the computation of several statistics246

of interest. Outputs can also be used as inputs for larger simulation frameworks like MSE. MSE constitutes247
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a modern and sophisticated approach to management of �sheries and ecosystems but, despite its formal248

complexity, the output and advice obtained is equally reliant on the quality of its inputs. The approach249

presented in this work is one step forward on providing stochastic input parameters. Additionally the250

methods advocated in this paper produce several abundance indicators that provide an overview of abundance251

along di�erent perspectives. The analysis of age compositions provides an insight on how the population252

structure evolves over time. The geostatistical submodel returns abundance indicators in both space and253

time perspectives, whereas the possibilities of explicitly modelling space-time interactions can be investigated254

(Silva et al., 2007).255

In practice, modelling abundance data requires several adjustments depending on the species, area and main256

objectives. Our case study allowed us to point out possible solutions but it will always be necessary to257

�nd appropriate solutions considering individual characteristics of the problem at hand. The application258

presented assumed that age compositions were independent from age aggregated catches, an assumption sup-259

ported by the exploratory data analysis. In more general terms this issue can be solved by post-strati�cation260

of the study area into strata where this assumption stands, either discretizing the age aggregated catches261

and modelling each data set independently or explicitly modelling this relation.262

The problem of asymmetry and over-dispersion surfaced during the analysis of our data set, caused by263

a large number of null or small observations and occasional very large catches. The GLM with negative264

binomial errors used to calibrate the observations provides a way to sort out such problems, and explained265

a considerable part of the spatially unstructured variability, as indicated by the low values of τ2. On the266

other hand, the problem of modelling zero observations is restricted to Pi and had a negligible impact on267

the geostatistical analysis which uses the age-aggregated catches, less likely to have null observations. This268

is another advantage of the proposed approach, as modelling abundance at age using geostatistics can be269

severely limited by zero values, commonly present on ages poorly represented in the sample. Attempts to270

apply geostatistical models separately to di�erent ages will most likely result in di�erent and eventually271

con�icting inferences on the correlation parameters, and inconsistent spatial predictions.272
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Table 1: Age aggregated abundance estimates by design statistics and geostatistics. The design statistics
were the strati�ed mean, Ŷ , its standard deviation, σŶ , and coe�cient of variation, CVŶ . The geostatistics

were the median, Ỹ , the median absolute deviation, MADỸ , the relative median absolute deviation, RMADỸ ,

the 0.025, Q(Ỹ , 0.025), the 0.975 percentiles, Q(Ỹ , 0.975), and the interquartile range, IQRỸ .
design statistics geostatistics

Year hauls Ŷ σŶ CVŶ Ỹ MADỸ RMADỸ Q(Ỹ , 0.025) Q(Ỹ , 0.975) IQRỸ

1989 130 59.2 1.7 0.03 33.6 6.6 0.2 21.2 49.7 28.4
1990 108 157 9.7 0.06 38.9 6.4 0.16 25.9 52.8 26.9
1991 80 194.1 12.2 0.06 154.8 27.4 0.18 101.3 250.4 149.1
1992 44 65.3 3.2 0.05 46.1 10.4 0.22 26.4 79.5 53
1993 58 54.1 4.5 0.08 8.1 1.5 0.18 5.5 11.9 6.5
1994 76 95.9 4.7 0.05 61.8 8.5 0.14 46.6 82.3 35.7
1995 80 85.2 4.1 0.05 59.4 8.5 0.14 42.1 80.7 38.5
1996 63 44.6 2.3 0.05 25.1 6.4 0.25 15.7 44.1 28.4
1997 51 207.2 21.5 0.1 123.9 20.1 0.16 86.9 188.4 101.4
1998 64 139.8 7.8 0.06 109.4 21.3 0.19 65.5 164.5 99
1999 71 71.2 2.5 0.04 27.3 5.8 0.21 16.1 42.2 26.1
2000 65 102.2 5.8 0.06 89.2 14.3 0.16 63 134.3 71.4
2001 58 164 15.3 0.09 140.3 23.2 0.17 91 199 107.9
2002 66 117.5 7.9 0.07 75 18.7 0.25 41.8 120.4 78.6
2003 72 55.3 2 0.04 41.5 8.4 0.2 25.6 65.2 39.6
2004 79 124.4 6.3 0.05 77.8 19.4 0.25 42.6 134.7 92.1
2005 87 214 9.4 0.04 153 29.7 0.19 93.6 235.2 141.7
2006 88 125.9 4.4 0.03 42.6 8.8 0.21 26.4 66.3 39.9
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Table 2: Abundance at age estimates by design statistics on the top panel and this study on the bottom
panel. The design statistics are the strati�ed mean and between brackets its coe�cient of variation. The
estimates provided by this study are the median and between brackets the relative median absolute deviation.

Estimator Year 0 1 2 3 4 5

Design 1989 12.9 (0.08) 20.1 (0.05) 16.9 (0.04) 7.4 (0.06) 1.5 (0.09) 0.4 (0.14)
based 1990 82.1 (0.11) 45.4 (0.05) 19.3 (0.05) 7.4 (0.05) 2.4 (0.07) 0.4 (0.12)

1991 56.6 (0.14) 82.4 (0.10) 36.7 (0.11) 14.6 (0.08) 3.1 (0.09) 0.6 (0.12)
1992 12.1 (0.16) 20.4 (0.09) 19.3 (0.08) 10.2 (0.07) 2.7 (0.10) 0.6 (0.17)
1993 23.2 (0.18) 17.1 (0.09) 8.6 (0.11) 3.6 (0.10) 1.3 (0.14) 0.3 (0.32)
1994 18.5 (0.14) 51.4 (0.07) 18.2 (0.08) 5.9 (0.10) 1.5 (0.15) 0.3 (0.21)
1995 2.1 (0.16) 34.6 (0.09) 37.2 (0.07) 8.1 (0.13) 2.9 (0.17) 0.4 (0.23)
1996 9.0 (0.10) 15.1 (0.09) 10.8 (0.12) 6.9 (0.12) 1.9 (0.16) 0.9 (0.17)
1997 40.4 (0.22) 70.4 (0.18) 83.7 (0.18) 8.7 (0.17) 2.3 (0.29) 1.6 (0.32)
1998 54.0 (0.11) 46.5 (0.10) 22.8 (0.08) 12.3 (0.09) 3.0 (0.13) 1.1 (0.17)
1999 9.1 (0.12) 26.9 (0.05) 25.0 (0.07) 7.8 (0.09) 2.0 (0.13) 0.4 (0.22)
2000 29.9 (0.14) 39.3 (0.09) 21.4 (0.08) 8.9 (0.10) 1.7 (0.12) 1.0 (0.16)
2001 50.9 (0.23) 73.9 (0.13) 22.2 (0.10) 14.3 (0.09) 2.1 (0.15) 0.6 (0.20)
2002 43.5 (0.16) 37.1 (0.09) 26.8 (0.08) 7.5 (0.11) 2.1 (0.15) 0.4 (0.26)
2003 5.9 (0.08) 28.6 (0.05) 13.2 (0.08) 6.1 (0.09) 1.3 (0.15) 0.2 (0.27)
2004 42.5 (0.10) 48.6 (0.08) 22.8 (0.08) 7.9 (0.11) 1.7 (0.16) 0.8 (0.18)
2005 105.8 (0.08) 67.5 (0.05) 30.2 (0.06) 7.8 (0.10) 2.0 (0.13) 0.7 (0.20)
2006 44.7 (0.07) 35.4 (0.06) 32.6 (0.06) 10.0 (0.09) 2.5 (0.13) 0.6 (0.21)

This study 1989 2.9 (0.25) 9.8 (0.21) 12.2 (0.20) 6.4 (0.22) 1.6 (0.24) 0.7 (0.25)
1990 3.9 (0.26) 13.6 (0.20) 11.9 (0.19) 6.0 (0.23) 2.4 (0.24) 0.7 (0.25)
1991 14.8 (0.32) 51.3 (0.25) 52.0 (0.23) 25.5 (0.26) 7.0 (0.30) 2.0 (0.30)
1992 2.7 (0.40) 9.1 (0.31) 13.5 (0.27) 13.8 (0.26) 4.7 (0.34) 1.5 (0.38)
1993 1.2 (0.30) 2.6 (0.24) 2.2 (0.23) 1.2 (0.29) 0.5 (0.29) 0.2 (0.33)
1994 5.2 (0.24) 26.3 (0.21) 15.3 (0.20) 10.5 (0.23) 3.3 (0.26) 0.9 (0.27)
1995 1.0 (0.30) 19.0 (0.19) 27.5 (0.16) 8.2 (0.19) 2.8 (0.23) 0.6 (0.26)
1996 2.6 (0.34) 8.7 (0.30) 6.4 (0.28) 4.6 (0.28) 1.7 (0.33) 1.1 (0.32)
1997 2.9 (0.38) 25.9 (0.29) 78.4 (0.18) 11.7 (0.25) 2.5 (0.29) 1.8 (0.31)
1998 16.2 (0.36) 29.0 (0.26) 27.5 (0.23) 24.5 (0.26) 6.8 (0.31) 2.7 (0.31)
1999 1.7 (0.31) 8.4 (0.26) 12.3 (0.21) 3.7 (0.26) 0.7 (0.28) 0.2 (0.30)
2000 7.8 (0.32) 25.6 (0.23) 32.8 (0.19) 16.6 (0.22) 3.7 (0.24) 2.5 (0.25)
2001 11.7 (0.31) 49.1 (0.25) 42.7 (0.22) 29.5 (0.24) 3.8 (0.28) 1.8 (0.29)
2002 12.1 (0.32) 23.7 (0.3) 26.8 (0.27) 7.8 (0.29) 2.5 (0.32) 0.9 (0.35)
2003 3.6 (0.27) 17.9 (0.24) 12.7 (0.22) 5.1 (0.26) 1.4 (0.29) 0.5 (0.28)
2004 15.7 (0.29) 37.5 (0.25) 17.1 (0.3) 4.5 (0.33) 1.5 (0.32) 1.0 (0.33)
2005 37.2 (0.26) 68.0 (0.21) 33.8 (0.24) 9.5 (0.26) 2.5 (0.28) 1.3 (0.29)
2006 5.3 (0.29) 13.0 (0.23) 15.9 (0.23) 6.3 (0.24) 1.5 (0.27) 0.5 (0.28)
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Figure 1: Yearly maps with locations of hauls (+) and observed catches of Hake (Merluccius merluccius)
during the Autumn series of the Portuguese bottom trawl survey. The gray circles are proportional to the
logarithm of the numbers of individuals caught per hour. The full line represents the Portuguese continental
coast.
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Figure 2: Graphical representation of the algorithm used for analysis showing a clear separation of yearly
abundance at age, I, in two branches. On the the left the age structure, P , is analysed with compositional
data analysis, and on the write the spatial distribution Y is analysed with geostatistical methods. The
last procedure is to combine the simulations of both variables to compute the stochastic distribution of the
abundance at age per year. The round boxes represent data and the sharp boxes represent methods. D is the
transformed compositional data; MVG=multivariate Gaussian distribution; Λ, Σ, µ and ς are parameters of
D; Z(x) is a stationary spatial process; β and Θ are parameters of the spatial models with σ2 = sill, φ =
correlation range and τ2 = nugget; x0 is a grid of unsampled locations; i indexes years, j indexes ages and
s indexes simulations.
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Figure 3: Age compositions empirical distribution obtained by parametric bootstrap. The full circle repre-
sents the median proportion and the gray lines represent the con�dence interval computed by the 0.025 and
0.975 percentiles.
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Figure 4: Yearly priors and posteriors for the correlation range φ and the relative nugget τ2
REL used for the

geostatistical analysis of the calibrated data set. The dashed line represents the priors for each parameter,
kept constant for all data sets. The full line represents the posteriors obtained per year for each data set.
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Figure 5: Yearly abundance estimates. The black circle represents the median abundance and the gray lines
represent the con�dence interval computed by the 0.025 and 0.975 percentiles.
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Figure 6: Spatial distribution of age aggregated abundance by year, standardised to the second fortnight of
October. The gray degrees are proportional to the number of individuals caught by unit e�ort, rescaled to
the maximum estimate within each year. The black color represent 1 and the white colour represents 0.
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Figure 7: Abundance at age and year standardised to have mean 0 and variance 1. Design estimates in
dashed line and geostatistical estimates in full line.
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