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Abstract1

This paper presents a bottom trawl survey (BTS) �eld experience carried out o� the Portuguese2

Continental shelf to test two sampling designs proposals previously analysed by simulation (Jardim3

and Ribeiro Jr, 2007) which implement an hybrid random-systematic and a systematic sampling4

strategy. We used a common base regular grid covering the survey area and overlap it with the existent5

random design to build the hybrid design while the systematic design adds a set of regular locations at6

smaller distances creating four denser sampling areas. We use hake (Merluccius merluccius) yield and7

model-based geostatistics (Diggle and Ribeiro Jr, 2007) to compute tools like: mean abundance, µ,8

and the 95% percentile, p95, that summarise the areal behaviour; coverage of the prediction con�dence9

interval, ξ, to assess the adequacy of the model; and a modi�ed generalised cross validation index,10

ε, to evaluate prediction precision. The hybrid design showed a lower coe�cient of variation for µ11

(11.89% against 13.25%); a slightly higher coe�cient of variation for p95 (11.31% against 11.09%);12

similar ξ (0.94); and lower ε (16.32 against 18.82). We conclude that: the hybrid design performs13

better and our procedure to build it can be used to adjust BTS designs to modern geostatistical14

techniques; and the statistics used constitute valuable tools to assess BTS performance.15

Key-words: model-based; geostatistics; hake; sampling design; bottom trawl survey.16
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1 Introduction17

Designs for Bottom trawl survey (BTS) rely on previous knowledge of the target species regarding spatial18

distribution and population structure combined with statistical analysis of preliminary data (e.g. Ault19

et al., 1999; Hata and Berkson, 2004) or simulation procedures (e.g. Schnute and Haigh, 2003; Anon.,20

2005b). These results are confronted with operational constraints such as trawlable grounds and vessel21

availability, among others, to de�ne the de�nitive BTS sampling design. The survey design is typically22

reviewed from time to time to adjust the strati�cation (e.g. Smith and Gavaris, 1993; Folmer and Pen-23

nington, 2000), tow duration (e.g. Cerviño and Saborido-Rey, 2006; Wieland and Storr-Paulsen, 2006),24

technical issues such as gear changes (e.g. Zimmermann et al., 2003; Cooper et al., 2004) and other factors25

which may change over the years.26

The Portuguese BTS started in June 1979, covering the continental shelf and following a strati�ed random27

design. In 1989 the strati�cation was de�ned by 12 sectors along the coast subdivided into 4 depth ranges:28

20-100m, 101-200m, 201-500m and 501-750 m, with a total of 48 strata. Due to constraints in the vessel29

time available the sample size was set to 97 locations evenly allocated to each stratum. The coordinates30

of the sampling locations were selected randomly, albeit constrained by the historical records of clear31

tow positions and other information about the sea �oor, thus avoiding places where trawling was not32

possible. During this period haul duration was set to one hour but recent experiments proved that half33

hour hauls provide the same information about length distributions (Cardador, pers.comm.). In light of34

this �ndings haul duration was reduced to half hour and an additional set of hauls were available which35

motivated a revision of the sampling design. The revision was splitted into a preliminary phase using36

simulations and geostatistical analysis (Jardim and Ribeiro Jr, 2007) and a second phase during which37

a �eld test was executed to provide real information about the proposed sampling designs. In a third38

moment the decision will have to be made based on the scienti�c data provided and the existing �nancial39

and administrative constraints.40

The �eld experience was carried out during the summer of 2001, with R/V Noruega o� the southwest of41

Portuguese Continental shelf (Fig. 1) using a Norwegian Campbel Trawl 1800/96 (NCT) with a codend42

of 20mm, mean vertical opening of 4.8m and mean horizontal opening between wings of 15.5m. The43

survey executed two sampling designs selected from the simulation study reported by Jardim and Ribeiro44

Jr (2007). The survey area was limited on the south by the cape of S.Vicente (37.00o north), on the45

north by Setubal's Canyon (38.30o north), on the east by the 20m depth isoline and on the west by the46

500m isoline. The survey area had approximately 4300km2 and the maximum distance within the area47

was approximately 150km. The data collected on both designs and considered here consists of date/time,48

geographical location and hake (Merluccius merluccius) catch in weight (kg). Geographical coordinates49

2



were transformed into UTM units and hake abundance was computed in kg/km and assigned to the haul50

starting coordinates. The area swept was computed using the haul start and ending positions to correct51

haul speed variations.52

Our analysis adopts model-based geostatistical method (Diggle et al., 1998; Diggle and Ribeiro Jr, 2007)53

to explicitly take into account spatial patterns of abundance and provide a �exible modelling framework.54

The designs are accessed by a set of statistics to provide information about di�erent aspects of the data,55

relevant for modelling �sh abundance. In a global perspective, referring to the entire study region, we use56

mean abundance and the 95% percentile to summarise the areal behaviour of abundance, commonly used57

for studying time trends and building abundance indices for stock assessment. In a local perspective,58

referring to particular locations within the study area, we use the observed values to assess the adequacy59

of the model, computing the coverage of the prediction con�dence interval, and the prediction precision,60

computing a modi�ed generalised cross validation index. Note that the assessment of the model adequacy61

and the prediction precision are extremely valuable statistics, once that kriging is in fact a linear predictor62

and the maps produced with it will be used to estimate the spatial distribution of abundance and the63

abundance index mentioned before. With relation to the analysis reported here we rely on our experience64

with bottom trawls surveys (Anon., 2002, 2003, 2004, 2005a, 2006; Sousa et al., 2005; Mendes et al., 2007;65

Sousa et al., 2007) to provide contextual information which supports the adoption of a particular class66

of models, and avoid as much as possible model mis-speci�cation.67

The work described on this paper aims at: (i) reporting a BTS �eld experience to test sampling designs,68

and (ii) describe geostatistical tools to assess the performance of sampling designs. Although the re-69

sults obtained are constraint by the characteristics of the area and the species analysed, we believe the70

methodology de�ned by our approach can be applied to other areas and species, providing an important71

source of information when revising sampling design.72

2 Methods73

This section describes the sampling designs to be tested and how they were built. It also describes74

the geostatistical modelling framework and the adjustments considered to cope with the small dataset75

available, a common characteristics of BTS due to its high price. At last we describe the technical details76

of the performance statistics chosen.77
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2.1 Sampling designs78

Several authors discussed the advantages of systematic designs over random designs to sample spatial79

correlated variables like �sh abundance (Cochran, 1960; Ripley, 1981; Thompson, 1992; Cressie, 1993;80

Chiles and Del�ner, 1999; Kimura and Somerton, 2006; Diggle and Ribeiro Jr, 2007). Nevertheless, in81

the case of spatial correlated variables there are two con�icting objectives that can not be combined82

in a single criteria, estimation of the covariance function parameters and prediction (Muller, 2001). In83

the �rst situation it is important to have locations at short distances to inspect the behaviour of the84

correlation function close to the origin, and locations at distances close to the limit of spatial correlation85

to estimate the correlation range (Muller, 2001). In the second situation the best predictions will result86

from the design with higher covariance with the locations to be predicted (Thompson, 1992). In the case87

of predicting �sh abundance it is common to require a complete map of the study area and the best88

choice will be a design that covers the area evenly. However, when the covariance function is unknown, a89

common characteristic of �sh abundance analysis, it must be estimated from the data before predicting90

and both objectives must be combined. Several authors propose designs that mix a set of locations91

covering the area with additional locations at short distances (Muller, 2001; Diggle and Lophaven, 2006;92

Zhu and Stein, 2006) to balance between both objectives. Such designs were not considered for bottom93

trawl surveys until now, although �sh abundance characteristics �t well in the assumptions of these94

proposals. Our sampling designs were built mixing a set of operational constraints with the geostatistical95

principles elaborated above and the need to keep the continuity of the survey history. In particular,96

the two designs tested were built to distinguish between an hybrid random-systematic sampling strategy97

and a systematic strategy. Both designs were built from a common basis, a regular grid covering the98

survey area. The hybrid design overlaps this regular grid with the existent random design keeping some99

continuity with the survey historical records (top-left plot in Fig. 2). The systematic design includes a100

set of locations positioned regularly at smaller distances creating 4 denser sampling areas (bottom-left101

plot in Fig. 2).102

2.2 Geostatistical model103

Geostatistical observations consist of pairs (x, y) with elements (xi, yi) : i = 1, . . . , n, where xi denotes104

the coordinates of each of the n spatial locations within a study region A ⊂ R2 and yi the measurement of105

the corresponding observable study variable. We adopted the Box-Cox transformed Gaussian model with106

transformation parameter λ as presented in Christensen et al. (2001). Denoting by zi the transformed107

values, such that gλ(yi) = zi, the model for the vector of variables Z observed at locations x can be108

written as a linear model Z(x) = S(x) + ε, where S is a stationary Gaussian stochastic process, with109
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E[S(x)] = µ, V ar[S(x)] = σ2 and an isotropic correlation function ρ(h) = Corr[S(x), S(x′)], where110

h = ‖x− x′‖ is the Euclidean distance between locations x and x′. The terms ε are assumed to be111

mutually independent and identically distributed, ε ∼ Gau(0, τ2). For the correlation function ρ(h) we112

adopt the exponential function with algebraic form ρ(h) = exp{−h/φ} where φ is the range parameter113

such that ρ(h) ' 0.05 when h = 3φ. Following usual geostatistical terminology (Isaaks and Srivastava,114

1989) we call σ2
T = τ2+σ2 the total sill, σ2 the partial sill, τ2 the nugget e�ect and 3φ the practical range.115

Geometric anisotropy (Isaaks and Srivastava, 1989; Cressie, 1993) is considered an extension of this model116

with extra parameter ψ = {ψA, ψR} where ψA is the anisotropic angle and ψR is the anisotropic ratio.117

Hereafter we use [·] to denote the distribution of the quantity indicated within brackets. Following the118

adopted model, [gλ(Y )] ∼ MVGau(µ1,Σ), i.e. [Y ] is multivariate trans-Gaussian with expected value µ119

and covariance matrix Σ parametrised by {σ2, φ, τ2}. Parameter estimates can be obtained by maximum120

likelihood (Cressie, 1993; Diggle et al., 1998; Diggle and Ribeiro Jr, 2007) and used for spatial prediction.121

In its simplest format, spatial prediction given by the kriging predictor consists of obtaining expected122

values and associated variances at unsampled locations. More generally, the predictive distribution of123

quantities of interest can be obtained analytically, if possible, or by sampling from this distribution. Con-124

sider a prediction target T (x0) = g−1
λ (S(x0)), the realised value of the process in the original measurement125

scale at spatial locations x0. Simulations from the conditional distribution [T (x0)|Y (x)] are obtained by126

simulating from the multivariate Gaussian [S(x0)|Y (x)] and back transforming the simulated values to127

the original scale of measurement (Chiles and Del�ner, 1999; Diggle and Ribeiro Jr, 2007). These simu-128

lations are called conditional simulations referring to the fact they are obtained from the distribution of129

the quantity of interest conditioned to the observed values Y (x).130

We split inference in two steps. First the Box-Cox transformation parameter λ and the anisotropy pa-131

rameter ψR are investigated by pooling all the observations in a single dataset and computing pro�le132

likelihoods (Diggle and Ribeiro Jr, 2007). We consider the north-south coastal orientation of the study133

region as the direction of greater spatial continuity and �x ψA in 0 degrees azimuthal angle. Afterward,134

having estimated these two parameters we regard their point estimates as constants in the model and135

proceed by computing, for each design, the maximum likelihood estimates of the remaining model param-136

eters. The reasoning for the two steps procedures is twofold. Pragmatically, this overcome the di�culty137

to identify all parameters with a small dataset, whereas in terms of modelling assumptions we regard138

the transformation and anisotropy parameters as part of the model speci�cation, re�ecting the nature139

of the data and contextual information and therefore not to be identi�ed by the designs. Thereafter, we140

compute kriging predictions on a 2× 2km grid within the study area, x0, with a total of 1070 locations,141

and obtain 1,000 conditional simulations from [Y (x0)|Y ] for each design.142
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2.3 Performance statistics143

Consider E[Z(xi)] and σ2
z(xi) the kriging predictor and its variance on the Gaussian scale at location144

xi ∈ x0 and the transformation parameter λ = 0.5. Back transformation to the original scale gives145

E[Y (xi)] = (1 + 0.5E[Z(xi)])2 + 0.25σ2
z(xi) and the global mean is estimated by averaging the predicted146

values µ̂ = m−1
∑m

i=0 Ê[Y (xi)]. The variance of µ̂, denoted by σ̂2
µ, is computed by the sum of all terms in147

the covariance matrix ΣY (x0) = V ar[Y (x0)|Y (x)], back transformed by ΣY (x0) = ΣZ(x0)[8−1ΣZ(x0) +148

(1 + 0.5E[Z(x)])2], where ΣZ(x0) is the covariance matrix of [S(x0)|Z(x)]. More generally, inferences149

on other quantities of interest T (x0) are obtained from the conditional simulations. Denote by ts(x0),150

s = 1, . . . , S = 1, 000 conditional simulations from [T (x0)|Y (x)]. For example, an α-th percentile is151

estimated by p̂ = S−1
∑

s p̂s where p̂s = pα(ts(x0)), the average of the empirical distribution p̂ obtained152

from the conditional simulations. The variance of p̂ is given by σ̂2
p = (S − 1)−1

∑
s(p̂s − p̂)2.153

The coverage of the prediction con�dence interval, ε, and the generalised cross validation index, ξ, were154

computed using cross-validation statistics (Hastie et al., 2001) combined with conditional simulations as155

follows. First, create a new data set by leaving one observation out at a location xi, simulate 1,000 values156

of the variable at that location, and repeated this procedure visiting all data locations. Subsequently, con-157

sider y(xi) an observation of the process Y on location xi, i = 1, . . . , n; y(x(i)) the observed data set with-158

out the observation y(xi) and ts(xi) a conditional simulation s = 1, . . . , S of [T (xi)|Y = y(x(i))] on loca-159

tion xi. The predictive con�dence interval is given by CI(xi) = [p2.5(ts(xi)), p97.5(ts(xi))] and the propor-160

tion of observations lying inside the intervals ξ = n−1
∑

i(y(xi) ∈ CI(xi)) provides the coverage of the pre-161

diction con�dence interval. The cross validation index is given by ε = n−1
∑

i(S
−1

∑
s(ts(xi)− y(xi))2),162

the average of the mean quadratic error on each location estimated using the full set of conditional163

simulations.164

3 Results165

The two sampling designs and the observations of hake yield are presented in the leftmost panels of166

Figure 2 where the base regular design is represented by the black triangles. The abundance of hake167

observed showed that the distribution of yield was spread over the area, presenting lower values in the168

north and a small number of zeros.169

The 95% con�dence interval obtained for the Box-Cox transformation parameter was [0.12, 0.55] and we170

set λ̂ = 0.5, corresponding to a square root transformation. The pro�led log-likelihood of the anisotropy171

ratio showed no evidence of anisotropy. Nevertheless, we carried out analysis using di�erent values of ψR172

to check the sensibility of the results, which proved negligible.173
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Covariance parameters estimates presented higher values for the hybrid design than the corresponding174

ones given by the systematic design (Table 1). The total variance σ̂2
T was 3.75, with τ̂2 = 0.75 and175

σ̂2 = 3.00; and φ̂ = 16.64. While the systematic design estimates were σ̂2
T = 3.20, with τ̂2 = 0.61 and176

σ̂2 = 2.59; and φ̂ = 10.21. Looking at τ2
REL and σ2φ−1, that give information about the variability of177

the spatial process, both designs showed similar relative nuggets but the hybrid design showed a lower178

ratio between sill and range, re�ecting a higher spatial structure of the stochastic process. Notice that179

the practical range, 3φ, was ≈ 50km for hybrid and ≈ 30km for the systematic design.180

The rightmost panels of Figure 2 show the abundance maps predicted and their variance, for each design.181

Both predictions are similar and the spatial pattern of variance re�ects the in�uence of the observations,182

showing lower variability near the observed locations and higher variability in areas where extrapolation183

was further extended. The hybrid design had higher variance in the centre-east of the study area and184

lower variance on the north due to a better coverage in this area.185

The estimates of µ and p95 were similar although the hybrid design presented slightly lower values. The186

hybrid design showed a lower coe�cient of variation for µ, CVµ = 11.89% than the systematic design,187

CVµ = 13.25%. The p95 variance was slightly lower for the systematic design, CVp95 = 11.09%, while the188

hybrid design presented CVp95 = 11.31%. The coverage of the prediction con�dence intervals was 0.94189

for both designs. These results reinforce our modelling choices given that if the model was wrong we'd190

expect ξ to be di�erent from the nominal value of the con�dence interval. The generalised cross validation191

index presented a lower estimate with the hybrid design, 16.32, than with the systematic design, 18.82,192

showing an higher prediction precision of the hybrid design. The above mentioned results re�ect that193

the higher spatial structure of the stochastic process estimated for the hybrid design surpassed its higher194

total variability with relation to the estimation of these performance statistics.195

4 Discussion196

Assessing sampling designs for BTS raises interesting questions about appropriated methodologies to197

analyse data and derive statistics of interest, which are particularly relevant considering the multipur-198

pose/multispecies nature of BTS and the small sample sizes.199

The adoption of a formal criteria and loss function to �nd an optimum design seems unrealistic in practice200

due to the multidimensionality of the data and the con�icting objectives of inference and prediction.201

Here we follow a pragmatic approach to sampling design and started by choosing a design that joins a202

regular grid with the old random design, followed by a second design that uses the same regular grid203

but reallocates the random locations in a regular shape. This way we build designs that implement the204

two most promising strategies, considering the wide literature that support the use of systematic designs205
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for spatial correlated variables, and test the possibility of keeping the continuity with the historical time206

series. To compare these proposals we rely on spatial modelling to compute statistics of primary interest207

and look for consistency among them, exploring several aspects of the same dataset. We advocate that208

the approach described above will provide valuable information to support the decision process.209

The performance statistics were selected to re�ect relevant characteristics and di�erent aspects of spatial210

prediction. The global mean is the most used index of abundance, often estimated by the sample average.211

We favour the geostatistical estimator presented and its variance as a measure of uncertainty, considering212

it takes into account the spatial dependency within the area and insights about the spatial process. The213

95th percentile estimated by conditional simulations can be used to identify areas of high abundance,214

giving information about candidate areas to protect. The coverage of the prediction con�dence intervals215

is a diagnostic tool. A small coverage re�ects an underestimation of the variance or the inadequacy of the216

model to explain the available data. The cross validation index combined with conditional simulations,217

incorporates the prediction precision in the index, which is not taken into account by the traditional218

cross validation. For example, if a location has the same predicted value by di�erent designs but with219

di�erent prediction variances, our approach would distinguish both situations, di�erently from the usual220

cross validation index.221

Our results showed that the hybrid design performed better in all cases except for σ2
p. A clear parallel222

can be established with the lattice plus closed pairs designs of Diggle and Lophaven (2006), the EK-223

optimal designs of Zimmerman (2006) or the DEA designs of Zhu and Stein (2006). All of these cover the224

study area and include a set of positions at small distance, albeit following di�erent constructions, these225

designs performed better than their random or systematic competitors. Common to all these studies and226

our work, is the fact that the analysis were carried out in situations where the model parameters were227

considered unknown and needed to be estimated from the data, which made it clear that both parameter228

estimation and prediction are important for the precision of the prediction target.229

Concluding, we consider that our results give indications that keeping the old random design and add230

a regular grid to build a new design can be a good and pragmatic solution to adjust BTS designs to231

modern model-based geostatistics techniques. Secondly, the performance statistics described above seem232

to capture the most important features of the data with relation to abundance estimation, constituting233

good measures to assess BTS performance.234
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Table 1: Estimates of model parameters and performance statistics by design. Model parameters are: τ2,
the short distance variance or nugget e�ect; σ2 the variance of the spatial process; σ2

T the total variance;
φ the correlation range parameter; and the transformation parameters λ, the Box-Cox parameter and
the anisotropy parameters {ψA, ψR}. The relative nugget, τ2

REL, and the ratio between relative sill and
range σ2φ−1, were computed to give more insights about the spatial process. Performance statistics are:
µ̄ and σ2

µ̄, the mean and variance of the global abundance; p̂95 and σ̂2
p, the mean and variance of the 95th

percentile of the global abundance; ε, the generalised cross validation index and ξ, the coverage of the
prediction con�dence interval with nominal level of 0.95.

hybrid systematic
model parameters

τ2 0.75 0.61
σ2 3.00 2.59
σ2

T 3.75 3.20
φ 16.64 10.21

τ2
REL 0.20 0.19

σ2φ−1 0.18 0.25
ψA 0.00 0.00
ψR 1.00 1.00
λ 0.50 0.50

performance statistics
µ̂ 4.07 4.20
σ̂2

µ 0.23 0.31
cv 11.89 13.25
p̂95 11.01 10.78
σ̂2

p 1.55 1.43
cv 11.31 11.09
ξ 0.94 0.94
ε 16.32 18.82
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Figure 1: Survey area on the southwest of the Portuguese Continental shelf between 20m and 500m.
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Figure 2: Study area on the Portuguese southwest coast. The top panels show information about the
hybrid random-systematic design and the bottom panels about the systematic design. The leftmost
plots show the sampling designs locations, the black triangles represent the regular grid common to both
designs, and the open circles the additional locations. Follows the observations of hake yield (kg/km)
and the predictions obtained by kriging, both on the square root scale. The rightmost plots present the
kriging variance
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