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Abstract

This paper presents a bottom trawl survey (BTS) field experience carried out off the Portuguese
Continental shelf to test two sampling designs proposals previously analysed by simulation (Jardim
and Ribeiro Jr, 2007) which implement an hybrid random-systematic and a systematic sampling
strategy. We used a common base regular grid covering the survey area and overlap it with the existent
random design to build the hybrid design while the systematic design adds a set of regular locations at
smaller distances creating four denser sampling areas. We use hake (Merluccius merluccius) yield and
model-based geostatistics (Diggle and Ribeiro Jr, 2007) to compute tools like: mean abundance, w,
and the 95% percentile, pos, that summarise the areal behaviour; coverage of the prediction confidence
interval, £, to assess the adequacy of the model; and a modified generalised cross validation index,
€, to evaluate prediction precision. The hybrid design showed a lower coefficient of variation for g
(11.89% against 13.25%); a slightly higher coeflicient of variation for pos (11.31% against 11.09%);
similar £ (0.94); and lower ¢ (16.32 against 18.82). We conclude that: the hybrid design performs
better and our procedure to build it can be used to adjust BTS designs to modern geostatistical

techniques; and the statistics used constitute valuable tools to assess BTS performance.

Key-words: model-based; geostatistics; hake; sampling design; bottom trawl survey.
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1 Introduction

Designs for Bottom trawl survey (BTS) rely on previous knowledge of the target species regarding spatial
distribution and population structure combined with statistical analysis of preliminary data (e.g. Ault
et al., 1999; Hata and Berkson, 2004) or simulation procedures (e.g. Schnute and Haigh, 2003; Anon.,
2005b). These results are confronted with operational constraints such as trawlable grounds and vessel
availability, among others, to define the definitive BTS sampling design. The survey design is typically
reviewed from time to time to adjust the stratification (e.g. Smith and Gavaris, 1993; Folmer and Pen-
nington, 2000), tow duration (e.g. Cervifio and Saborido-Rey, 2006; Wieland and Storr-Paulsen, 2006),
technical issues such as gear changes (e.g. Zimmermann et al., 2003; Cooper et al., 2004) and other factors

which may change over the years.

The Portuguese BTS started in June 1979, covering the continental shelf and following a stratified random
design. In 1989 the stratification was defined by 12 sectors along the coast subdivided into 4 depth ranges:
20-100m, 101-200m, 201-500m and 501-750 m, with a total of 48 strata. Due to constraints in the vessel
time available the sample size was set to 97 locations evenly allocated to each stratum. The coordinates
of the sampling locations were selected randomly, albeit constrained by the historical records of clear
tow positions and other information about the sea floor, thus avoiding places where trawling was not
possible. During this period haul duration was set to one hour but recent experiments proved that half
hour hauls provide the same information about length distributions (Cardador, pers.comm.). In light of
this findings haul duration was reduced to half hour and an additional set of hauls were available which
motivated a revision of the sampling design. The revision was splitted into a preliminary phase using
simulations and geostatistical analysis (Jardim and Ribeiro Jr, 2007) and a second phase during which
a field test was executed to provide real information about the proposed sampling designs. In a third
moment the decision will have to be made based on the scientific data provided and the existing financial

and administrative constraints.

The field experience was carried out during the summer of 2001, with R/V Noruega off the southwest of
Portuguese Continental shelf (Fig. 1) using a Norwegian Campbel Trawl 1800/96 (NCT) with a codend
of 20mm, mean vertical opening of 4.8m and mean horizontal opening between wings of 15.5m. The
survey executed two sampling designs selected from the simulation study reported by Jardim and Ribeiro
Jr (2007). The survey area was limited on the south by the cape of S.Vicente (37.00° north), on the
north by Setubal’s Canyon (38.30° north), on the east by the 20m depth isoline and on the west by the
500m isoline. The survey area had approximately 4300km? and the maximum distance within the area
was approximately 150km. The data collected on both designs and considered here consists of date/time,

geographical location and hake (Merluccius merluccius) catch in weight (kg). Geographical coordinates
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were transformed into UTM units and hake abundance was computed in kg/km and assigned to the haul
starting coordinates. The area swept was computed using the haul start and ending positions to correct

haul speed variations.

Our analysis adopts model-based geostatistical method (Diggle et al., 1998; Diggle and Ribeiro Jr, 2007)
to explicitly take into account spatial patterns of abundance and provide a flexible modelling framework.
The designs are accessed by a set of statistics to provide information about different aspects of the data,
relevant for modelling fish abundance. In a global perspective, referring to the entire study region, we use
mean abundance and the 95% percentile to summarise the areal behaviour of abundance, commonly used
for studying time trends and building abundance indices for stock assessment. In a local perspective,
referring to particular locations within the study area, we use the observed values to assess the adequacy
of the model, computing the coverage of the prediction confidence interval, and the prediction precision,
computing a modified generalised cross validation index. Note that the assessment of the model adequacy
and the prediction precision are extremely valuable statistics, once that kriging is in fact a linear predictor
and the maps produced with it will be used to estimate the spatial distribution of abundance and the
abundance index mentioned before. With relation to the analysis reported here we rely on our experience
with bottom trawls surveys (Anon., 2002, 2003, 2004, 2005a, 2006; Sousa et al., 2005; Mendes et al., 2007;
Sousa et al., 2007) to provide contextual information which supports the adoption of a particular class

of models, and avoid as much as possible model mis-specification.

The work described on this paper aims at: (i) reporting a BTS field experience to test sampling designs,
and (ii) describe geostatistical tools to assess the performance of sampling designs. Although the re-
sults obtained are constraint by the characteristics of the area and the species analysed, we believe the
methodology defined by our approach can be applied to other areas and species, providing an important

source of information when revising sampling design.

2 Methods

This section describes the sampling designs to be tested and how they were built. It also describes
the geostatistical modelling framework and the adjustments considered to cope with the small dataset
available, a common characteristics of BTS due to its high price. At last we describe the technical details

of the performance statistics chosen.
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2.1 Sampling designs

Several authors discussed the advantages of systematic designs over random designs to sample spatial
correlated variables like fish abundance (Cochran, 1960; Ripley, 1981; Thompson, 1992; Cressie, 1993;
Chiles and Delfiner, 1999; Kimura and Somerton, 2006; Diggle and Ribeiro Jr, 2007). Nevertheless, in
the case of spatial correlated variables there are two conflicting objectives that can not be combined
in a single criteria, estimation of the covariance function parameters and prediction (Muller, 2001). In
the first situation it is important to have locations at short distances to inspect the behaviour of the
correlation function close to the origin, and locations at distances close to the limit of spatial correlation
to estimate the correlation range (Muller, 2001). In the second situation the best predictions will result
from the design with higher covariance with the locations to be predicted (Thompson, 1992). In the case
of predicting fish abundance it is common to require a complete map of the study area and the best
choice will be a design that covers the area evenly. However, when the covariance function is unknown, a
common characteristic of fish abundance analysis, it must be estimated from the data before predicting
and both objectives must be combined. Several authors propose designs that mix a set of locations
covering the area with additional locations at short distances (Muller, 2001; Diggle and Lophaven, 2006;
Zhu and Stein, 2006) to balance between both objectives. Such designs were not considered for bottom
trawl surveys until now, although fish abundance characteristics fit well in the assumptions of these
proposals. Our sampling designs were built mixing a set, of operational constraints with the geostatistical
principles elaborated above and the need to keep the continuity of the survey history. In particular,
the two designs tested were built to distinguish between an hybrid random-systematic sampling strategy
and a systematic strategy. Both designs were built from a common basis, a regular grid covering the
survey area. The hybrid design overlaps this regular grid with the existent random design keeping some
continuity with the survey historical records (top-left plot in Fig. 2). The systematic design includes a
set of locations positioned regularly at smaller distances creating 4 denser sampling areas (bottom-left

plot in Fig. 2).

2.2 Geostatistical model

Geostatistical observations consist of pairs (z,y) with elements (z;,y;) : ¢ = 1,...,n, where x; denotes
the coordinates of each of the n spatial locations within a study region A C R? and y; the measurement of
the corresponding observable study variable. We adopted the Box-Cox transformed Gaussian model with
transformation parameter A as presented in Christensen et al. (2001). Denoting by z; the transformed
values, such that gx(y;) = z;, the model for the vector of variables Z observed at locations x can be

written as a linear model Z(z) = S(x) + ¢, where S is a stationary Gaussian stochastic process, with
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E[S(z)] = p, Var[S(z)] = % and an isotropic correlation function p(h) = Corr[S(z),S(z’)], where
h = ||z — 2’| is the Euclidean distance between locations x and 2’. The terms e are assumed to be
mutually independent and identically distributed, e ~ Gau(0,72). For the correlation function p(h) we
adopt the exponential function with algebraic form p(h) = exp{—h/¢} where ¢ is the range parameter
such that p(h) ~ 0.05 when h = 3¢. Following usual geostatistical terminology (Isaaks and Srivastava,
1989) we call 02 = 72402 the total sill, o2 the partial sill, 72 the nugget effect and 3¢ the practical range.
Geometric anisotropy (Isaaks and Srivastava, 1989; Cressie, 1993) is considered an extension of this model

with extra parameter v = {¢4, ¥} where ¥4 is the anisotropic angle and 1 is the anisotropic ratio.

Hereafter we use [] to denote the distribution of the quantity indicated within brackets. Following the
adopted model, [gx(Y)] ~ MVGau(u1,Y), i.e. [Y] is multivariate trans-Gaussian with expected value p
and covariance matrix ¥ parametrised by {02, ¢, 72}. Parameter estimates can be obtained by maximum
likelihood (Cressie, 1993; Diggle et al., 1998; Diggle and Ribeiro Jr, 2007) and used for spatial prediction.
In its simplest format, spatial prediction given by the kriging predictor consists of obtaining expected
values and associated variances at unsampled locations. More generally, the predictive distribution of
quantities of interest can be obtained analytically, if possible, or by sampling from this distribution. Con-
sider a prediction target T'(zo) = g5 ' (S(z0)), the realised value of the process in the original measurement
scale at spatial locations xg. Simulations from the conditional distribution [T'(xo)|Y (z)] are obtained by
simulating from the multivariate Gaussian [S(z¢)|Y (z)] and back transforming the simulated values to
the original scale of measurement (Chiles and Delfiner, 1999; Diggle and Ribeiro Jr, 2007). These simu-
lations are called conditional simulations referring to the fact they are obtained from the distribution of

the quantity of interest conditioned to the observed values Y (z).

We split inference in two steps. First the Box-Cox transformation parameter A and the anisotropy pa-
rameter Y are investigated by pooling all the observations in a single dataset and computing profile
likelihoods (Diggle and Ribeiro Jr, 2007). We consider the north-south coastal orientation of the study
region as the direction of greater spatial continuity and fix 14 in 0 degrees azimuthal angle. Afterward,
having estimated these two parameters we regard their point estimates as constants in the model and
proceed by computing, for each design, the maximum likelihood estimates of the remaining model param-
eters. The reasoning for the two steps procedures is twofold. Pragmatically, this overcome the difficulty
to identify all parameters with a small dataset, whereas in terms of modelling assumptions we regard
the transformation and anisotropy parameters as part of the model specification, reflecting the nature
of the data and contextual information and therefore not to be identified by the designs. Thereafter, we
compute kriging predictions on a 2 x 2km grid within the study area, xo, with a total of 1070 locations,

and obtain 1,000 conditional simulations from [Y (z¢)|Y] for each design.
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2.3 Performance statistics

Consider E[Z(x;)] and o%(z;) the kriging predictor and its variance on the Gaussian scale at location
x; € xg and the transformation parameter A = 0.5. Back transformation to the original scale gives

E[Y(x;)] = (1+0.5E[Z(2;)])? + 0.250%(z;) and the global mean is estimated by averaging the predicted

2

.., is computed by the sum of all terms in

values i =m~' 3" E[Y (2;)]. The variance of /i, denoted by &
the covariance matrix Yy (zg) = Var[Y (zo)|Y (x)], back transformed by Sy (z0) = Xz(20)[8 71X z(x0) +
(1 + 0.5E[Z(x)])?], where ¥z(z¢) is the covariance matrix of [S(xo)|Z(z)]. More generally, inferences
on other quantities of interest T'(xg) are obtained from the conditional simulations. Denote by ts(xo),
s =1,...,8 = 1,000 conditional simulations from [T'(z)|Y (z)]. For example, an a-th percentile is

estimated by p = S~ > ps where ps = pa(ts(z0)), the average of the empirical distribution p obtained

from the conditional simulations. The variance of p is given by 62 = (S —1)"' > (ps — p)*.

The coverage of the prediction confidence interval, €, and the generalised cross validation index, £, were
computed using cross-validation statistics (Hastie et al., 2001) combined with conditional simulations as
follows. First, create a new data set by leaving one observation out at a location z;, simulate 1,000 values
of the variable at that location, and repeated this procedure visiting all data locations. Subsequently, con-
sider y(x;) an observation of the process Y on location z;,i = 1,...,n; y(z(;)) the observed data set with-
out the observation y(x;) and t4(z;) a conditional simulation s = 1,...,S of [T'(x;)|Y = y(z(;))] on loca-
tion x;. The predictive confidence interval is given by CI(z;) = [p2.5(ts(x;)), po7.5(ts(x;))] and the propor-
tion of observations lying inside the intervals ¢ = n~' ", (y(z;) € CI(z;)) provides the coverage of the pre-
diction confidence interval. The cross validation index is given by e = n™ ' > .(S™E 3" (ts () — y(24))?),
the average of the mean quadratic error on each location estimated using the full set of conditional

simulations.

3 Results

The two sampling designs and the observations of hake yield are presented in the leftmost panels of
Figure 2 where the base regular design is represented by the black triangles. The abundance of hake
observed showed that the distribution of yield was spread over the area, presenting lower values in the

north and a small number of zeros.

The 95% confidence interval obtained for the Box-Cox transformation parameter was [0.12,0.55] and we
set A = 0.5, corresponding to a square root transformation. The profiled log-likelihood of the anisotropy
ratio showed no evidence of anisotropy. Nevertheless, we carried out analysis using different values of ¥ g

to check the sensibility of the results, which proved negligible.
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Covariance parameters estimates presented higher values for the hybrid design than the corresponding
ones given by the systematic design (Table 1). The total variance 62 was 3.75, with 72 = 0.75 and
6% = 3.00; and ¢ = 16.64. While the systematic design estimates were 62, = 3.20, with 72 = 0.61 and
6% = 2.59; and ¢ = 10.21. Looking at 72, and 02¢~!, that give information about the variability of
the spatial process, both designs showed similar relative nuggets but the hybrid design showed a lower
ratio between sill and range, reflecting a higher spatial structure of the stochastic process. Notice that
the practical range, 3¢, was ~ 50km for hybrid and ~ 30km for the systematic design.

The rightmost panels of Figure 2 show the abundance maps predicted and their variance, for each design.
Both predictions are similar and the spatial pattern of variance reflects the influence of the observations,
showing lower variability near the observed locations and higher variability in areas where extrapolation
was further extended. The hybrid design had higher variance in the centre-east of the study area and

lower variance on the north due to a better coverage in this area.

The estimates of p and pgs were similar although the hybrid design presented slightly lower values. The
hybrid design showed a lower coefficient of variation for p, CV, = 11.89% than the systematic design,
CV,, = 13.25%. The pys variance was slightly lower for the systematic design, CVpgs = 11.09%, while the
hybrid design presented CV 95 = 11.31%. The coverage of the prediction confidence intervals was 0.94
for both designs. These results reinforce our modelling choices given that if the model was wrong we’d
expect € to be different from the nominal value of the confidence interval. The generalised cross validation
index presented a lower estimate with the hybrid design, 16.32, than with the systematic design, 18.82,
showing an higher prediction precision of the hybrid design. The above mentioned results reflect that
the higher spatial structure of the stochastic process estimated for the hybrid design surpassed its higher

total variability with relation to the estimation of these performance statistics.

4 Discussion

Assessing sampling designs for BTS raises interesting questions about appropriated methodologies to
analyse data and derive statistics of interest, which are particularly relevant considering the multipur-
pose,/multispecies nature of BTS and the small sample sizes.

The adoption of a formal criteria and loss function to find an optimum design seems unrealistic in practice
due to the multidimensionality of the data and the conflicting objectives of inference and prediction.
Here we follow a pragmatic approach to sampling design and started by choosing a design that joins a
regular grid with the old random design, followed by a second design that uses the same regular grid
but reallocates the random locations in a regular shape. This way we build designs that implement the

two most promising strategies, considering the wide literature that support the use of systematic designs
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for spatial correlated variables, and test the possibility of keeping the continuity with the historical time
series. To compare these proposals we rely on spatial modelling to compute statistics of primary interest
and look for consistency among them, exploring several aspects of the same dataset. We advocate that

the approach described above will provide valuable information to support the decision process.

The performance statistics were selected to reflect relevant characteristics and different aspects of spatial
prediction. The global mean is the most used index of abundance, often estimated by the sample average.
We favour the geostatistical estimator presented and its variance as a measure of uncertainty, considering
it takes into account the spatial dependency within the area and insights about the spatial process. The
95th percentile estimated by conditional simulations can be used to identify areas of high abundance,
giving information about candidate areas to protect. The coverage of the prediction confidence intervals
is a diagnostic tool. A small coverage reflects an underestimation of the variance or the inadequacy of the
model to explain the available data. The cross validation index combined with conditional simulations,
incorporates the prediction precision in the index, which is not taken into account by the traditional
cross validation. For example, if a location has the same predicted value by different designs but with
different prediction variances, our approach would distinguish both situations, differently from the usual
cross validation index.

Our results showed that the hybrid design performed better in all cases except for 012). A clear parallel
can be established with the lattice plus closed pairs designs of Diggle and Lophaven (2006), the EK-
optimal designs of Zimmerman (2006) or the D 4 designs of Zhu and Stein (2006). All of these cover the
study area and include a set of positions at small distance, albeit following different constructions, these
designs performed better than their random or systematic competitors. Common to all these studies and
our work, is the fact that the analysis were carried out in situations where the model parameters were
considered unknown and needed to be estimated from the data, which made it clear that both parameter

estimation and prediction are important for the precision of the prediction target.

Concluding, we consider that our results give indications that keeping the old random design and add
a regular grid to build a new design can be a good and pragmatic solution to adjust BTS designs to
modern model-based geostatistics techniques. Secondly, the performance statistics described above seem
to capture the most important features of the data with relation to abundance estimation, constituting

good measures to assess BTS performance.
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Table 1: Estimates of model parameters and performance statistics by design. Model parameters are: 72,

the short distance variance or nugget effect; o2 the variance of the spatial process; 0% the total variance;
¢ the correlation range parameter; and the transformation parameters A, the Box-Cox parameter and
the anisotropy parameters {14, r}. The relative nugget, 7'}2% L, and the ratio between relative sill and
range 02¢ 1, were computed to give more insights about the spatial process. Performance statistics are:
i and 03, the mean and variance of the global abundance; pgs and (712,, the mean and variance of the 95th
percentile of the global abundance; €, the generalised cross validation index and &, the coverage of the
prediction confidence interval with nominal level of 0.95.

hybrid systematic
model parameters
T2 0.75 0.61
o2 3.00 2.59
o2, 3.75 3.20
0] 16.64 10.21
TAEL 0.20 0.19
o?p~1 0.18 0.25
Pa 0.00 0.00
YR 1.00 1.00
A 0.50 0.50
performance statistics
I 4.07 4.20
57 0.23 0.31
cv 11.89 13.25
2 11.01 10.78
52 1.55 1.43
cv 11.31 11.09
I3 0.94 0.94
€ 16.32 18.82

12



Figure 1: Survey area on the southwest of the Portuguese Continental shelf between 20m and 500m.
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Figure 2: Study area on the Portuguese southwest coast. The top panels show information about the
hybrid random-systematic design and the bottom panels about the systematic design. The leftmost
plots show the sampling designs locations, the black triangles represent the regular grid common to both
designs, and the open circles the additional locations. Follows the observations of hake yield (kg/km)
and the predictions obtained by kriging, both on the square root scale. The rightmost plots present the
kriging variance
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