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ABSTRACT: The citrus sudden death (CSD) disease affects dramatically citrus trees 15

causing a progressive plant decline and death. The disease has been identified in the late 16

90’s in the main citrus production area of Brazil and since then there are efforts to 17

understand the etiology as well as the mechanisms its spreading. One relevant aspect of 18

such studies is to investigate spatial patterns of the occurrence within a field. Methods 19

for determining whether the spatial pattern is aggregated or not has been frequently 20

used. However it is possible to further explore and describe the data by means of 21

adopting an explicit model to discriminate and quantify effects by attaching parameters 22

to covariates which represent aspects of interest to be investigated. One alternative 23

involves autologistic models, which extend a usual logistic model in order to 24

accommodate spatial effects. In order to implement such model it is necessary to take 25

into account the reuse of data to built spatial covariates, which requires extensions in 26

methodology and algorithms to assess the variance of the estimates. This work presents 27

an application of the autologistic model to data collected at 11 time points from citrus 28
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fields affected by CSD. It is shown how the autologistic model is suitable to investigate 29

diseases of this type, as well as a description of the model and the computational aspects 30

necessary for model fitting.31

Key words: spatial statistics, plant disease, binary response variable, pseudolikelihood, 32

bootstrap33

34

MODELO AUTOLOGÍSTICO COM APLICAÇÃO PARA O MAL DA MORTE 35

SÚBITA DOS CITRUS36

RESUMO: A morte súbita dos citros (MSC) é uma doença com efeitos dramáticos em 37

árvores de citros causando declínio progressivo e morte. Ela foi identificada no final da 38

década de 90 em uma das principais áreas de produção no Brasil e desde então esforços 39

são empregados para entender a sua etiologia e os seus mecanismos de dispersão. Um 40

aspecto relevante para estudos é a investigação do padrão espacial da incidência dentro 41

de um campo. Métodos para determinar se o padrão espacial é agregado ou não têm 42

sido freqüentemente utilizados. Entretanto é possível explorar e descrever os dados 43

adotando um modelo explícito, com o qual é possível discriminar e quantificar os 44

efeitos com parâmetros para covariáveis que representam aspectos de interesse 45

investigados. Uma das alternativas é adoção de modelos autologísticos, que estendem o 46

modelo de regressão logística para acomodar efeitos espaciais. Para implementar esse 47

modelo é necessário que se reuse os dados para extrair covariáveis espaciais, o que 48

requer extensões na metodologia e algoritmos para acessar a variância das estimativas. 49

Este trabalho apresenta uma aplicação do modelo autologístico a dados coletados em 11 50

pontos no tempo em um campo de citros afetado pela MSC. É mostrado como o modelo 51

autologístico é apropriado para investigar doenças desse tipo, bem como é feita uma 52
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descrição do modelo e dos aspectos computacionais necessários para a estimação do 53

modelo.54

Palavras-chave: estatística espacial, doença de plantas, variável resposta binária, 55

pseudoverossimilhança, bootstrap56

57

INTRODUCTION58

Brazil is the major citrus region in the world and is responsible for about 53% of 59

the worldwide orange juice production and for 80% of the concentrated form. Citrus 60

growers, industry and scientists are constantly aiming for higher productivity, control of 61

the production process and capacity. Such targets are threatned by various diseases 62

among which is the citrus sudden death (CSD), a new and destructive disease first 63

observed in the late 90’s in southwest Minas Gerais and northern São Paulo States, 64

Brazil (Gimenes-Fernandes & Bassanezi, 2001). This disease causes the decline and 65

death of sweet oranges (Citrus sinensis (L.) Osb.) and some mandarins (C. reticulata66

Blanco) grafted onto either Rangpur lime (C. limonia Osb.) or Volkamerian lemon (C. 67

volkameriana V. Tem. & Pasq.), the most used rootstocks because under São Paulo 68

conditions citrus grafted on these rootstocks can be grown without irrigation (Gimenes-69

Fernandes & Bassanezi, 2001; Román et al, 2004).70

The first report of CSD, many efforts have been carried out to understand the 71

etiology as well as the mechanisms of the spreading of this disease. Search for 72

infectious agents in CSD-symptomatic trees including fungi, exogenous and 73

endogenous bacteria and phytoplasmas, and viroids produced negative results 74

(Bassanezi et al., 2003; Román et al., 2004).  Only two virus, CTV and a new virus 75

Tymoviridae, tentatively called Citrus sudden death associated virus (CSDaV), have 76
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been found in CSD-affected trees, and their association with the disease has been 77

studied (Coletta Filho et al., 2005; Maccheroni et al., 2005). However, the extreme 78

variability and complexity of CTV and the very low concentration of CSDaV make the 79

CSD etiology very difficulty to be proven.  Before CSD-causal agent identification, 80

studies on spatial patterns of CSD-affected plants could be useful to make inferences 81

about the nature of the causal agent.82

Several methods, such as the analysis of ordinary runs (Madden et al., 1982), 83

intraclass correlation (k) (Xu & Ridout, 2000), binomial index of dispersion (D) and 84

binary form of Taylor’s power law (Madden & Hughes, 1995) and spatial 85

autocorrelation analysis (Gottwald et al., 1992), have been used to investigate the 86

development of CSD epidemics in space, as well as the resulting spatial patterns 87

(Bassanezi et al., 2003; Bassanezi et al., 2005, Lima et. al. 2006).  At the individual tree 88

scale, ordinary run analysis of CSD-symptomatic trees indicated clustering of 89

symptomatic trees mainly within rows.  90

At the middle scale of small groups of trees, the D and k indexes for various 91

quadrat sizes suggested the aggregation of CSD-symptomatic trees for almost all plots 92

within the quadrat sizes tested, and the index of aggregation increased with quadrat size.  93

Estimated parameters of the binary form of Taylor’s power law provided an overall 94

measure of aggregation of CSD-symptomatic trees for all quadrat sizes and the intensity 95

of aggregation was also a function of quadrat size and disease incidence.  96

The largest tested scale was the entire plot level.  Spatial autocorrelation analysis 97

of proximity patterns suggested that aggregation often existed among quadrats of 98

various sizes up to three lag distances.  These results were interpreted as indicating that 99

the disease is caused by a biotic factor, and that the disease was transmitted within a 100
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local area of influence of approximately six trees in all directions, including adjacent 101

trees (Bassanezi et al., 2003; Bassanezi et al., 2005).  Based on the similarities of CSD 102

symptoms and its spatial patterns with Citrus tristeza, caused by Citrus tristeza virus 103

and transmitted by aphids, the current hypothesis is that CSD is caused by virus and 104

vectored by flying vectors.105

All above described spatial analyses only allow to characterize the pattern as 106

aggregated, regular or random, and are useful in a preliminary step of analysis to 107

accumulate evidences about the spatial pattern diagnostic of incidence. A characteristic 108

aspect of such methods is the fact that the spatial configuration is treated as a lattice. 109

Another possible approach for the analysis of a large number of plants would be to 110

consider the plants with the disease as a point process in space and use the distance 111

between infected trees to infer about the spatial pattern (Spósito et. al. 2007) or using 112

percolation methods to infer probabilities given the status of the neighbours (Santos et. 113

al. 1998). However, such methods are not designed to quantify the effects of spatial 114

effects represented by covariates since they do not assume an explicit model relating 115

such covariates with the presence of the disease, neither allow for other covariates of 116

potential interest. 117

One alternative investigated here is the adoption of an autologistic model which 118

relates the probability of a unit to become diseased given the status of neighbouring 119

plants in space and/or time, taken as covariates and therefore having an associated 120

coefficient parameter. The regular arrangement favors for the adoption of autoregressive 121

type of models for the analysis, which allows for the detection of usual covariate effects 122

as well as the assessment of the relevance of the spatial effects. The latter are 123

particularly useful for the description and hypothesis tests on the patterns of the disease, 124
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which may suggest propagation mechanisms and control strategies.  125

For binary data such as presence/absence of the disease, the autologistic model 126

describes the probability of a tree to become infected given the status of the 127

neighbouring trees. The model parameters have a direct interpretation as odds of being 128

infected, incorporating explicitly the dependence structure. In agricultural applications 129

the model has being initially adopted the study the incident of Phytophthora for bell 130

pepper (Gumpertz et al., 1997) with attempts to expand the model to describe spatial 131

temporal patterns of pine beetles (Gumpertz & Pye 1999; Zhu et. al. 2005). Here we 132

further explore the model considering the particular aspects of citrus groves and CSD. 133

The model reports the analysis of data collected at 11 different time points in a field 134

with presence of CSD.135

136

MATERIAL AND METHODS137

The logistic regression model is currently widely used for the analysis of binary 138

outcomes such as presence or absence of a certain attribute of interest. For presence of 139

plant disease it is particularly relevant to consider a possible spatial dependence given it 140

is reasonable to assume that neighbouring trees are more likely to have similar status, 141

which reflects an eventual aggregation in the spatial pattern of the disease. The 142

autologistic model (Besag 1972) extends the usual logistic regression accounting for 143

such spatial structure by modeling the conditional probability of a tree to be infected 144

given the status of the neighbouring trees. 145

Autologistic model146

The autologistic model describes the probability ijp  of a plant in the ith row and 147

jth column having the disease, given the status of the neighbouring plants depending on 148
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the value of a covariate connected to the outcome, through the link function,149

)()()(logit 1,1,2,1,110   jijijijiij yyyyp  ,                    (1)150

with  jiy ,1  and jiy ,1  being the status in the adjacent rows which are combined to 151

produce the row covariate; jiy ,1  and 1, jiy  the status of plants in adjacent columns 152

producing the column covariate; 1  and 2  are the respective parameters measuring the 153

effect of such spatial covariates. The separation of row and column effects 154

accommodates the fact that the spacing is typically different within and between rows, 155

allowing to study directional effects.156

A naïve method to obtain parameter estimates for },{ 21    is based on the 157

maximization of the pseudo-likelihood (Besag 1975) 158


i j

ij ypfyL ),()/(
~ 

,                                              (2)159

where )(f  is the density of the Bernoulli probability distribution. This estimation 160

method provides consistent parameter point estimates, it however underestimates the 161

associated standard errors and therefore inferences on model parameters can be 162

misleading. Intuitively this is caused by the reuse of data, given the fact that an 163

observation is used as a response variable as well as to build the covariates in the model.164

One possible solution is to use resampling methods. However within the context 165

of spatial patterns this is not straightforward given the need to preserve the spatial 166

structure. This can be achieved by block resampling (Cressie 1993) for instance using a 167

Gibbs sampler (Gumpertz et al. 1997). The basic idea is to sample from the distribution 168

of each observation ijy  conditioning on the current status of the neighbours, with 169

probabilities given by the autologistic model of equation (1). This is a sequential 170

algorithm that opperates as follows: we start with observed values 
)0(y  from which we 171
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obtain parameter estimates )0(  by maximizing of the pseudo-likelihoodof equation (2). 172

Next we generate B bootstrap samples ),...,( )()1( Byy  obtaining estimates )ˆ,...,ˆ( )()1( B173

for each of them. The bootstrap samples are obtained through the following steps: i. 174

starting from an arbitrary location (tree), update its status by sampling from the 175

Bernoulli distribution ),ˆ( )()0( tyf   with the probability given by the fitted model 176

parameters and current status of the plants, in a random sequence until the cycle is 177

completed, i.e. the status of all the trees are updated generating a bootstrap sample with 178

artificial data 
)(ty ; ii. when a cycle is completed, obtain parameter estimates by 179

maximizing pseudolikelihood function given by equation (2); iii. repeat steps i and ii180

until  the required number B of bootstrap samples is obtained. 181

The simulation algorithm ensures that the chain of the parameter estimates 182

converges to the correct distribution and therefore, the variance of the estimator ̂  is 183

then given simply by the variance of the estimates )ˆ,...,ˆ( )()1( B . It is also advisable to 184

disregard a certain number m of initial resamples, the so called burn-in period when the 185

chain may not yet have converged, and also trimming the simulations taking one at each 186

k steps to reduce the number of stored simulations. These procedures were implemented 187

as part of the present work in a freely available and open source add-on package Rcitrus188

(Krainski & Ribeiro Jr. 2007) from the R statistical environment for statistical analysis 189

(R Development Core Team 2007). 190

Models191

The data considered here were collected on a citrus grove with presence of CSD, 192

in the municipality of Comendador Gomes (1973’ S, 4906’ W; altitude 705m), Minas 193

Gerais State, Brazil. The trees were arranged in 20 rows of 48 plants with spacing of 7.5 194
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m between rows and 4 m within rows. Data were collected at 11 time points between 195

05/11/2001 and 07/10/2002. The incidence ranged from 14.9% at the first visit to 45.7% 196

on the final date. The response variable used here is the presence/absence of CSD on 197

each tree.198

Three candidate models were considered for the analysis, the first (m1) 199

considering as spatial covariates the neighbouring observations within and between 200

rows as the response variable, measured at the same time and defined as follows:201

)()()(logit 1,1,2,1,110
t

ji
t

ji
t

ji
t

ji
t
ij yyyyp                      (3)202

Model m2, considers the same neighbourhood, however with data reflecting the 203

status of the plants at the previous observation time: 204

)()()(logit 1
1,

1
1,2

1
,1

1
,110











  t

ji
t

ji
t

ji
t

ji
t
ij yyyyp                    (4)205

Finally, model m3 combines the two previous models considering covariates 206

built with contemporary and previous status of the neighbours:207
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(5)209

The significance tests for the regression parameters are based on the usual 210

approximation for generalized linear models assuming that )1,0(~)ˆ(ˆ NVar  . For 211

m1, the significance test for the coefficients allows the detection of the relevance of the 212

spatial effect as well as testing for effects of the status of close neighbours given by the 213

within row covariate, and more distant neighbours given by the between rows covariate. 214

Model m2 assess the predictive ability of the model through the lagged information built 215

in the covariate allowing to inspect the conjecture the present status of the trees would 216

allow to predict the probability of trees the become infected at the next observation 217
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time. The covariate effects assess patterns of the disease spread. Model m3 combines 218

lagged and contemporary covariates in this order, attempting to check whether the latter 219

further the model fit accounting for infection factors not captured by the lagged 220

covariate.221

The three models considered here suggest different mechanisms to explain the 222

spread of the disease and therefore the model selection is itself a goal in the study. The 223

Akaike Information Criteria (AIC) provides a measure used to assess and compare 224

model fits and is given by the penalization of the log-likelihood by model complexity 225

and is given by pyL 2)),ˆ(
~

log(*2  , where p is the number of parameters included in 226

the model. Another measure widely used is the BIC (Bayesian Information Criteria), 227

which increases the penalty function as the sample size increases. In both cases smaller 228

values indicate a better fitted model. These measured values can be used to guide the 229

model selection, however, being a criteria and therefore arbitrarily defined, they should 230

not replace the interpretation and contextual information, specially when the differences 231

between the models are small, specially in the particular case of these spatial models 232

where the likelihood is just an approximation.  233

234

RESULTS AND DISCUSSION235

Significant effects were found only for the covariate number of neighbours 236

within row for models m1 e m2 and the spatial covariate was not significant for the first 237

and second data collections (Table 1). Overall similar results were found for model m2.238

239
Table 1 – Incidence, parameter estimates and p-values for models m1, m2 and m3.240

Model m1 Model m2 Model m3

Previous time Present time
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Evaluation Incidence
1̂ p-value

1̂ p-value
1̂ p-value

2̂ p-value

1 0.15 0.327 0.133

2 0.17 0.389 0.071 0.366 0.017 -0.034 0.435 0.417 0.046

3 0.22 0.643 0.001 0.482 0.002 -0.506 0.004 1.027 0.000

4 0.24 0.708 0.000 0.653 0.000 -0.239 0.060 0.916 0.000

5 0.26 0.611 0.000 0.618 0.000 0.244 0.024 0.390 0.016

6 0.28 0.656 0.000 0.617 0.000 -0.245 0.031 0.887 0.000

7 0.32 0.628 0.000 0.606 0.000 0.097 0.196 0.544 0.001

8 0.33 0.642 0.000 0.632 0.000 0.070 0.259 0.573 0.000

9 0.34 0.616 0.000 0.623 0.000 0.472 0.000 0.154 0.167

10 0.36 0.474 0.001 0.505 0.000 0.444 0.000 0.064 0.334

11 0.46 0.542 0.000 0.436 0.000 -0.120 0.118 0.637 0.000

241

Model m3 includes two spatial covariates: S1 is number of within row 242

neighbours at present time and S2 at previous time. Estimated coefficients and p-values 243

are also shown in Table 1. Some combinations of relevant results are as follows. Both 244

spatial covariates are significant at the 5% significance level for times 3, 5 and 6; for 245

times 2, 4, 7, 8 and 11, only S1 was significant; and only S2 for times 9 e 10. It is 246

important to notice a potential (nearly) collinearity effect since the values of the two 247

covariates can be similar, specially when the incidence is nearly the same between two 248

consecutive observations in time.249

Table 2 shows the Akaike Information Criteria (AIC), which is used to assess 250

the fitted models. This criteria shows that model m1 is preferable for most of the 251

observation periods (2,4,5,6,7,8 e 11), that m3 is better supported for time 3 and m2 for 252

times 9 and 10. Similar results were obtained with the BIC criterium.253

254
Table 2 – AIC values for the tree fitted models255
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Evaluation Model m1 Model m2 Model m3

2 725.55 726.76 727.54

3 813.25 824.66 812.33

4 851.58 858.66 853.08

5 908.32 909.09 909.81

6 932.52 936.61 934.17

7 992.94 997.26 994.80

8 1003.70 1004.79 1005.68

9 1019.30 1018.58 1020.50

10 1067.11 1064.87 1066.82

11 1009.49 1121.87 1111.08

256

The major advantage of having an explicit model is the possibility of quantifying 257

the probability of disease in a particular tree given the status of the neighboring plants. 258

In the current study the spatial covariates counts the number of infected neighboring 259

trees and therefore assume values 0, 1 or 2. The coefficient associated with the spatial260

covariate allows computing the increment in the odds of a plant having the disease as 261

the number of infected neighbours increases. The three models considered the status  262

within and between rows, however in an overall way , fitted models here indicates only 263

the knowledge of the status of the within rows neighbours is relevant. This shows 264

evidence that the spatial pattern is present and that conditioning only on close 265

neighbours is sufficient for the description. 266

The estimated coefficients for model m2 are -1.773 and 0.366. The value 267

e0 .366
 is the increment in the odds of having the disease of a plant with k infected 268

neighbours compared with another one with k-1 infected neighbours or, in other words, 269

the increment of one infected neighbour increases the probability of the disease by a 270

factor of 1.442. Consider now under this model we aim to compute the probability of a 271
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tree to become diseased at a particular time, given the data was collected at the previous 272

time. For the third evaluation, the probability of a tree to become infected is 0.145, 273

0.197 and 0.261 for zero, one or two infected neighbours, respectively. For the 274

subsequent times the coefficients are -1.557 and 0.482 and these probabilities are now 275

0.174, 0.254 and 0.356 showing an increase of the odds from one to another time 276

interval. Similar results could be computed for other time points and models using the 277

fitted coefficients. 278

Figure 1 summarizes the computed probabilities from the second (2001-12-05) 279

to the eleventh (2002-10-07) collection times. The lines with different patterns provide 280

the profiles of the probabilities for plants with zero, one and two infected neighbours 281

and the corresponding shaded lines are the confidence intervals. The consistent message 282

is that the probability rises with the increase of the incidence, reflected by the intercept 283

coefficient in association with the spatial pattern given the by the coefficients associated 284

to the covariate. From the third observation, the confidence intervals do not overlap, 285

indicating that the infective pressure is greater for two than one, and one than zero, 286

infected neighbours. 287

288
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Figure 1 – Evolution of the probability of a plant to become diseased over evaluations 289

with corresponding confidence intervals.290

291

FINAL REMARKS292

Autologistic models provide a tool to further explore and describe spatial 293

patterns of plant diseases beyond currently adopted methods, allowing a better 294

understand of the mechanisms of the spread of the disease, not only by detecting spatial 295

patterns but also quantifying them through the associated coefficients the effects of 296

disease presence in different neighbourhood structures. An important feature of the 297

autologistic model applied to individual trees is the objectivity when analysing original 298

data, without the need of some sort of arbitrary discretization, as needed by methods 299

based in quadrats. 300

The results found here for CDS points to the presence of spatial patterns in the 301

disease for which evidence becomes clear as the incidence rises. In general, there is 302

evidence of aggregation for levels of incidences higher than 20%. From the third data 303

collection time onwards there was a noticeable increase of the probability of a plant to 304

become diseased in the presence of infected neighbours as given for instance by the   305

m2 fit that shows evidence of infective pressure. Notice however that the detection can 306

be influenced by the time interval between observations. In a overall overall view the 307

within row effect is stronger, reflecting the spacing adopted in the field and supporting 308

the conjecture of the spatial pattern, i.e. the closer the plants the higher the infective 309

pressure.310

The autologistic model has a potential do be widely adopted to investigate 311

spatial patterns. It requires an extra computational burden compared with usual 312
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generalized linear models, which we have overcame with our own and freely available 313

computational implementation. Further attempts to explore more flexible and general 314

descriptions of the spatial patterns, ways to combine a sequence of time observations 315

are steps to be followed in our investigation. The methodology also suggests a way to 316

objectively combine data from different fields, allowing for an investigation of effects 317

of choices of spacing between trees, age, type of citrus, seasonal effects, tree 318

combinations and other properties that can vary among different fields.319
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